Statement Of Problem: The accuracy of single implant placement is critical, as errors may cause problems with vital structures intraoperatively, as well as postoperatively with the prostheses. These issues may be exacerbated in complete-arch edentulous treatments requiring relative accuracy among multiple implants, particularly with prefabricated prosthetic structures.

Purpose: The purpose of this clinical study was to determine the accuracy of dental implant placement by using haptic robotic guidance in completely edentulous participants.

Material And Methods: In a prospective single-arm clinical study, 5 qualified participants elected to receive dental implants placed by using haptic robotic guidance to restore either the maxillary or mandibular arch, or both, with complete-arch implant-supported prostheses. Three dual-arch participants and 2 single-arch participants resulted in 38 endosteal dental implants being placed. A virtual preoperative restorative and surgical plan was created before surgery. This plan was matched to the surgical workspace on the day of surgery by using a bone-mounted fiducial splint fabricated from a cone beam computed tomography (CBCT) scan. Intraoperatively, the surgeons maneuvered a handpiece attached to the robotic guidance arm, osteotomies were created with a haptically constrained handpiece, and the implants were placed with 3-dimensional haptic constraints as per the virtual plan. Postoperative CBCT scans allowed the evaluation of the deviations of the actual implant placement relative to the plan.

Results: Twenty-three implants were placed in the mandible and 15 in the maxilla. The mean ±standard deviation global angular deviation was 2.56 ±1.48 degrees, while the crown of the placed implant showed a deviation from the plan of 1.04 ±0.70 mm and the apex of 0.95 ±0.73 mm. The signed depth deviation was 0.42 ±0.46 mm proud. No adverse events were reported.

Conclusions: This clinical series for treating completely edentulous patients by using haptic robotic guidance was found to be safe and accurate. While further longer-term clinical studies are necessary to measure outcomes and to assess differences as compared with nonrobotic implementations, haptic robotic preparation appears to confer additional intraoperative advantages over other techniques for treating completely edentulous arches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prosdent.2020.12.048DOI Listing

Publication Analysis

Top Keywords

haptic robotic
20
robotic guidance
20
completely edentulous
16
implant placement
12
dental implant
8
edentulous arches
8
clinical study
8
dental implants
8
treating completely
8
robotic
6

Similar Publications

Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.

View Article and Find Full Text PDF

Current teleoperated robotic systems for retinal surgery cannot effectively control subtle tool-to-tissue interaction forces. This limitation may lead to patient injury caused by the surgeon's mistakes. To improve the safety of retinal surgery, this paper proposes a haptic shared control framework for teleoperation based on a force-constrained supervisory controller.

View Article and Find Full Text PDF

Background/objectives: For healthcare institutions developing a robotic programme, delivering value for patients, clinicians, and payers is key. However, the impact on the surgeon, training pathways, and logistics are often overlooked. We conducted a study on the impact of robotic surgery on surgeons, access to robotic surgical training, and factors associated with developing a successful robotic programme.

View Article and Find Full Text PDF

Recent Advancements in Robotic-assisted Plastic Surgery Procedures: A Systematic Review.

Plast Reconstr Surg Glob Open

January 2025

Department of Plastic and Reconstructive Surgery, Royal Free NHS Foundation Trust, London, United Kingdom.

Background: There has been a delayed, yet steady uptake of robotic-assisted surgery over the past decade within the field of plastic surgery. In an era of rapidly evolving scientific and technological development, there is a need for an update on the current literature for robotic-assisted plastic surgery procedures.

Methods: Searches were conducted across major databases, including MEDLINE, Embase, and Central for published literature from March 2023 to December 2024.

View Article and Find Full Text PDF

The Role and Future of Artificial Intelligence in Robotic Image-Guided Interventions.

Tech Vasc Interv Radiol

December 2024

Department of Interventional Radiology, MedStar Georgetown University Hospital, Washington, DC. Electronic address:

Artificial intelligence and robotics are transforming interventional radiology, driven by advancements in computer vision, robotics and procedural automation. Historically focused on diagnostics, AI now also enhances procedural capabilities in IR, enabling future robotic systems to handle complex tasks such as catheter manipulation or needle placement with increasing precision and reliability. Early robotic systems in IR demonstrated improved accuracy in both vascular and percutaneous interventions, though none were equipped with automatic decision-making.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!