The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model.

Biosens Bioelectron

Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China. Electronic address:

Published: May 2021

Components within the tumor microenvironment, such as intratumoral bacteria (IB; within tumors), affect tumor progression. However, current experimental models have not explored the effects of extratumoral bacteria (EB; outside tumors) on cancer progression. Here, we developed a microfluidic platform to analyze the influence of bacterial distribution on bladder cancer progression under defined conditions, using uropathogenic Escherichia coli. This was achieved by establishing coating (CT) and colonizing (CL) models to simulate the different invasion and colonization modes of IB and EB in tumor tissues. We demonstrated that both EB and IB induced closer cell-cell contacts within the tumor cluster, but cancer cell viability was reduced only in the presence of IB. Interestingly, cancer stem cell counts increased significantly in the presence of EB. These outcomes were due to the formation of extracellular DNA-based biofilms by EB. Triple therapy of DNase (anti-biofilm agent), ciprofloxacin (antibiotic), and doxorubicin (anti-cancer drug) could effectively eradicate biofilms and tumors simultaneously. Our preclinical proof-of-concept provides insights on how bacteria can influence tumor progression and facilitate future research on anti-biofilm cancer management therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113113DOI Listing

Publication Analysis

Top Keywords

tumor progression
12
bacteria tumors
8
cancer progression
8
tumor
6
progression
5
cancer
5
effects biofilms
4
biofilms tumor
4
progression cancer-biofilm
4
cancer-biofilm microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!