Human serum transferrin (HST) acts as a carrier for Fe and other ions. Binding of flavonoids to HST produces changes in the protein structure with direct implication on iron delivery into cells. We investigate the binding mechanism and affinity towards HST of three flavonoids: rutin, luteolin, and apigenin by different techniques: UV-Vis, fluorescence, fluorescence resonance energy transfer (FRET) combined with molecular docking. UV-Vis results indicate an interaction between flavonoids and HST. It was observed that HST fluorescence was quenched by these three flavonoids via a static process. All the interactions were moderate and the main driving forces are hydrophobic (ΔH > 0 and ΔS > 0) for rutin and luteolin binding or electrostatic (ΔH < 0 and ΔS > 0) for apigenin binding. FRET and molecular docking studies confirm the fluorescence static quenching mechanism by flavonoid binding. The binding of all three flavonoids increases HST stability. These results present the potential use of HST in target-oriented delivery of flavonoids and possibly other drugs into cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.119600 | DOI Listing |
PLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.
View Article and Find Full Text PDFFood Chem X
January 2025
Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
This study aimed to fortify Jamun () juice with vitamin D to address vitamin D deficiency and boost health. A nanoemulsion of vitamin D was fabricated using a low-temperature (4-20C) sonication method and incorporated into the juice. The vitamin D fortified jamun juice (VDFJJ) exhibited a total polyphenol content of 14.
View Article and Find Full Text PDFMol Nutr Food Res
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Cardiovascular diseases (CVDs) are the leading cause of death globally. Decrease in female sex hormones during menopause increases the risk of cardiovascular disease, mainly ischemic heart disease (IHD). Quercetin, a flavonoid, has beneficial properties in CVDs due to its antioxidant, anti-inflammatory, and anti-apoptotic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!