Parkinson's disease (PD) is one of the most common neurodegenerative diseases, which is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway. Synaptic dysfunction impairs dopamine turnover and contributes to the degeneration of dopaminergic neurons. However, the molecular mechanisms underlying synaptic dysfunction and dopaminergic neuronal vulnerability in PD are not clear. Here, we report that synaptojanin 1 (SYNJ1), a polyphosphoinositide phosphatase concentrated at nerve terminals, is a substrate of a cysteine proteinase, asparagine endopeptidase (AEP). SYNJ1 is cleaved by the cysteine proteinase AEP at N599 in the brains of PD patients. AEP-mediated cleavage of SYNJ1 disrupts neuronal phosphoinositide homeostasis and causes synaptic dysfunction. Overexpression of the AEP-generated fragments of SYNJ1 triggers synaptic dysfunction and the degeneration of dopaminergic neurons, inducing motor defects in the α-synuclein transgenic mice. Blockage of AEP-mediated cleavage of SYJN1 alleviates the pathological and behavioral defects in a mouse model of PD. Our results demonstrate that the fragmentation of SYNJ1 by AEP mediates synaptic dysfunction and dopaminergic neuronal degeneration in PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2021.105326 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFAm J Pathol
January 2025
Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.
View Article and Find Full Text PDFCell Chem Biol
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW, UK; UK Dementia Research Institute at University of Cambridge Cambridge CB2 0XY, UK. Electronic address:
Synaptic dysfunction is a primary hallmark of both Alzheimer's and Parkinson's disease, leading to cognitive and behavioral decline. While alpha-synuclein, beta-amyloid, and tau are involved in the physiological functioning of synapses, their pathological aggregation has been linked to synaptopathology. The methodology for studying the small-soluble protein aggregates formed by these proteins is limited.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Sports, Exercise and Brain Sciences Laboratory, Sports Coaching College, Beijing Sport University, 100084 Beijing, China.
Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology, Faculty of Health Care and Social Work, Trnava University and University Hospital, 917 02 Trnava, Slovakia.
The autoantibodies against the NR1 subunit are well known in the pathomechanism of NMDAR encephalitis. The dysfunction of the NR2 subunit could be a critical factor in this neurological disorder due to its important role in the postsynaptic pathways that direct synaptic plasticity. We report a case of paraneoplastic anti-NMDAR encephalitis presented alongside very severe illness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!