F-box proteins β-TrCP1 and β-TrCP2 are paralogs present in the human genome. They control several cellular processes including cell cycle and DNA damage signaling. Moreover, it is reported that they facilitate DNA damage-induced accumulation of p53 by directing proteasomal degradation of MDM2, a protein that promotes p53 degradation. However, the individual roles of β-TrCP1 and β-TrCP2 in the genotoxic stress-induced activation of cell cycle checkpoints and DNA damage repair remain largely unknown. Here, using biochemical, molecular biology, flow cytometric, and immunofluorescence techniques, we show that β-TrCP1 and β-TrCP2 communicate during genotoxic stress. We found that expression levels of β-TrCP1 are significantly increased while levels of β-TrCP2 are markedly decreased upon induction of genotoxic stress. Further, our results revealed that DNA damage-induced activation of ATM kinase plays an important role in maintaining the reciprocal expression levels of β-TrCP1 and β-TrCP2 via the phosphorylation of β-TrCP1 at Ser158. Phosphorylated β-TrCP1 potently promotes the proteasomal degradation of β-TrCP2 and MDM2, resulting in the activation of p53. Additionally, β-TrCP1 impedes MDM2 accumulation via abrogation of its lysine 63-linked polyubiquitination by β-TrCP2. Thus, β-TrCP1 helps to arrest cells at the G2/M phase of the cell cycle and promotes DNA repair upon DNA damage through attenuation of β-TrCP2. Collectively, our findings elucidate an intriguing posttranslational regulatory mechanism of these two paralogs under genotoxic stress and revealed β-TrCP1 as a key player in maintaining the genome integrity through the attenuation of β-TrCP2 levels in response to genotoxic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8093472PMC
http://dx.doi.org/10.1016/j.jbc.2021.100511DOI Listing

Publication Analysis

Top Keywords

genotoxic stress
20
cell cycle
16
β-trcp1 β-trcp2
16
dna damage
12
β-trcp1
11
β-trcp2
10
dna repair
8
response genotoxic
8
dna damage-induced
8
proteasomal degradation
8

Similar Publications

Background: Melanoma is a highly lethal form of skin cancer, and effective treatment remains a significant challenge. SPP86 is a novel potential therapeutic drug. Nonetheless, the specific influence of SPP86 on autophagy, particularly its mechanisms in the context of DNA damage and apoptosis in human melanoma cells, remains inadequately understood.

View Article and Find Full Text PDF

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.

View Article and Find Full Text PDF

Background: B-cell specific Moloney MLV insertion site-1 (Bmi-1) belongs to the polycomb group (PcG) gene and is a transcriptional suppressor to maintain appropriate gene expression patterns during development. To investigate whether the Bmi-1 gene has a corrective effect on bone senescence induced in Bmi-1 mice through regulating the bone microenvironment.

Methods: Littermate heterozygous male and female mice (Bmi-1) were used in this study.

View Article and Find Full Text PDF

Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine methyltransferase (PRMT) family protein in carcinogenesis.

Materials And Methods: An method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in the PDB shares just a structurally conserved catalytic core domain.

View Article and Find Full Text PDF

Imidazo based heterocyclic derivatives are considered as privileged scaffolds due to their presence in various pharmacologically active compounds and in marketed formulations. The present study reports toxicological evaluation of three imidazo based heterocyclic derivatives which are currently being investigated for their potential anticancer activity. Compounds IG-01-007, IG-01-008, and IG-01-009 were assessed for cytotoxicity, hemolysis, and DNA fragmentation activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!