Ionic liquid and magnetic multiwalled carbon nanotubes for extraction of N-methylcarbamate pesticides from water samples prior their determination by capillary electrophoresis.

Talanta

Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Department of Analytical Chemistry and Food Technology, Chemical Scientific and Technological Faculty. University of Castilla-La Mancha, Ciudad Real, Spain. Electronic address:

Published: May 2021

A simple and rapid microextraction procedure is reported on the use of ionic liquid (IL) in combination with magnetic multiwalled carbon nanotubes (MMWCNTs). The procedure is based on temperature-controlled IL dispersive liquid phase microextraction (DLPME) and MMWCNTs, for selective preconcentration of N-methylcarbamate pesticides in water samples, followed by their hydrolysis in alkaline buffer, prior to being analyzed by capillary electrophoresis. The extraction procedure uses small volume of organic solvents, and there is no need for centrifugation. In the experimental approach the IL was quickly disrupted by an ultrasonic probe, heated with the temperature controlled at 90 °C and dispersed in water samples in a homogenous form. At this stage, N-methylcarbamate pesticides migrate into the IL. Then the solution was cooled and small amounts of MMWCNTs were dispersed into the sample solutions to adsorb the ionic liquid containing the analytes and phase separation was completed. The ionic liquid allowed the microextraction of the analytes and a small volume of dichloromethane (DCM) was used for elution. MMWCNTs favored the adsorption of the ionic liquid with the analytes and improved the final recovery with respect to the use of simple magnetic nanoparticles as a sorbent material. Under the optimum conditions, limit of quantifications (LOQ) were achieved in the 5.6-9.3 ng mL range, with recoveries between 85.0% and 102.4%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2021.122106DOI Listing

Publication Analysis

Top Keywords

ionic liquid
20
n-methylcarbamate pesticides
12
water samples
12
magnetic multiwalled
8
multiwalled carbon
8
carbon nanotubes
8
pesticides water
8
capillary electrophoresis
8
small volume
8
liquid analytes
8

Similar Publications

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

This study explores the effects of a subcritical seawater treatment (SST) on buckwheat waste (BW), and the use of the hydrolysate as a liquid fertilizer to improve the growth of lettuce ( L.). Three temperature treatments (110 °C, 170 °C, 230 °C) were used for the SST, and the ionic composition in the seawater achieved the depolymerization and degradation of BW.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

Thanks to their unique physicochemical properties, ionic liquids (ILs) have moved from niche academic interest to critical components in various industrial applications. The textile industry, facing significant environmental and economic pressures, has begun to explore ILs as sustainable alternatives to traditional solvents and chemicals. This review summarizes research on the use of ILs in various textile processes, including dyeing, finishing, and fiber recycling, where their high thermal stability, tunable solubility, and low volatility are exploited to reduce resource consumption and environmental impact.

View Article and Find Full Text PDF

Reconcentrating the Ionic Liquid EMIM-HSO Using Direct Contact Membrane Distillation.

Molecules

January 2025

Department of Chemical Engineering, Louisiana Tech University, 600 Dan Reneau Drive, P.O. Box 10348, Ruston, LA 71272, USA.

Adequate water supplies are crucial for missions to the Moon, since water is essential for astronauts' health. Ionic liquids (ILs) have been investigated for processing metal oxides, the main components of lunar regolith, to separate oxygen and metals. The IL must be diluted in the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!