Effects of La incorporation in catalytic activity of Ag/La-CeO catalysts for soot oxidation.

J Hazard Mater

Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Super Ultra Low Energy and Emission Vehicle (SULEEV) Center, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; KU-KIST Green School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Electronic address:

Published: July 2021

Owing to strengthened regulations toward vehicle emissions, the use of diesel particulate filter technology to reduce particulate matter emissions has attracted significant attention. To achieve low temperature oxidation of particulate matter, numerous studies on Ag/CeO catalysts for soot oxidation have been reported. Herein, Ag/La-CeO catalysts with different La contents are synthesized and compared to analyze the effect of La. Hydrogen temperature programmed reduction analysis confirms that the reducibility increases with an increase in the La content in La-CeO. X-ray photoelectron spectroscopy and Raman analysis confirm an increase of oxygen vacancies with La doping. Accordingly, the soot oxidation performances estimated by temperature programmed oxidation experiments increase with La doping. However, the catalytic activity of Ag/La-CeO exhibits a volcano trend. When an appropriate amount of La is incorporated in Ag/CeO, peroxide generation and reducibility improve, thereby enhancing the soot oxidation performance. Conversely, the catalytic activities gradually decrease with excess La-doping. Scanning transmission electron microscopy analysis and density functional theory calculations confirm that excess amounts of La induce the sintering of Ag particles, which lead to the degradation of peroxide generation and reducibility of the catalysts. Consequently, an optimal amount of La incorporation on Ag/La-CeO results in the best soot oxidation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125523DOI Listing

Publication Analysis

Top Keywords

soot oxidation
20
catalytic activity
8
activity ag/la-ceo
8
ag/la-ceo catalysts
8
catalysts soot
8
particulate matter
8
temperature programmed
8
peroxide generation
8
generation reducibility
8
oxidation performance
8

Similar Publications

The removal of soot particles via high-performance catalysts is a critical area of research due to the growing concern regarding air pollution. Among various potential catalysts suitable for soot oxidation, cerium oxide-based materials have shown considerable promise. In this study, CeO samples obtained using a range of preparation methods (including hydrothermal synthesis (HT), sonochemical synthesis (SC), and hard template synthesis (TS)) were tested in soot combustion.

View Article and Find Full Text PDF

Isotopic Transient Kinetic Analysis of Soot Oxidation on MnO, MnO-CeO, and CeO Catalysts in Tight Contact Conditions.

Molecules

January 2025

Department of Chemical Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.

The reaction mechanism of soot oxidation on Mn (MnO), Mn-Ce (MnO-CeO), and Ce (CeO) catalysts in tight contact conditions was investigated using ITKA (isotopic transient kinetic analysis). The obtained results suggest that lattice-bulk oxygen from all studied catalysts takes part in the soot oxidation process but with varying relative contributions: for the Ce catalyst, this contribution is practically 100%, whereas with decreasing Ce content in Mn-Ce catalysts, the significance of lattice-bulk oxygen for soot oxidation diminishes. For the Mn catalyst, it is estimated to be below 50%.

View Article and Find Full Text PDF

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Enhancing Catalytic Removal of Autoexhaust Soot Particles via the Modulation of Interfacial Oxygen Vacancies in Cu/CeO Catalysts.

Environ Sci Technol

January 2025

State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.

The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.

View Article and Find Full Text PDF

A Review of Laboratory Studies on the Heterogeneous Chemistry of NO: Mechanisms and Uptake Kinetics.

J Phys Chem A

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!