Pharmaceutical products are used tremendously worldwide and subsequently released into wastewater even at very low concentration caused serious environmental problem due to their high activity. Therefore, the present work focuses on remarkable removal of paracetamol as one from the most used pharmaceutical intermediates, by using porous film based on cellulose acetate@metal organic framework (CA@Ti-MIL-NH). The film was designed to achieve extreme removal of paracetamol by action of both of adsorption and degradation. Metal organic frame work was directly synthesized and inserted within the pre-prepared porous CA film to obtain porous CA@Ti-MIL-NH film. The synthesized films were applied in adsorption and photo-degradation of paracetamol separately and together. Due to the photocatalytic activity of Ti-MIL-NH the photo-degradation of paracetamol in visible-light was much effective and considerably high degradation of paracetamol was observed (k = 760.0 m) comparing to the adsorption (k = 160.0 m). The overall removal of paracetamol was significantly enlarged from 82.7 mg/g for CA film to 519.1 mg/g for porous CA@Ti-MIL-NH film. The used film exhibited quite good reusability and the removal of paracetamol was lowered from 96% to 85% after 5 regeneration cycles. Results of total organic carbon confirmed that paracetamol was fully degraded to CO and water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125509 | DOI Listing |
Biomaterials
January 2025
Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, PR China. Electronic address:
Developing nanomedicines with enhanced activity to scavenge reactive oxygen species (ROS) has emerged as a promising strategy for addressing ROS-associated diseases, such as drug-induced liver injury. However, designing nanozymes that not only remove ROS but also accelerate the repair of damaged liver cells remains challenging. Here, a two-pronged black phosphorus/Ceria nanozyme with mitochondria-targeting ability (TBP@CeO) is designed.
View Article and Find Full Text PDFPhytomedicine
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China. Electronic address:
Background: Radix Bupleuri (RB) and acetaminophen (APAP) are two popular medications having potential hepatotoxicity and substantial risks of irrational co-administration and excessive use, posing an overlooked danger of drug-induced liver injury (DILI). Autophagy is a protective mechanism against APAP-induced DILI, yet, saikosaponin d (SSd) in RB has been characterized to regulate autophagy, although the current findings are controversial.
Purpose: We aim to elucidate whether SSd promoted APAP-induced liver injury by regulating autophagy.
J Environ Manage
January 2025
Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), Yliopistonkatu 34, 53850, Lappeenranta, Finland.
As the global consumption of pharmaceuticals increases, so does their release into water bodies. The effects, although not fully understood, can be detrimental to aquatic ecosystems and human health. The new Urban Wastewater Treatment Directive (UWWTD) in European Union requires implementation of quaternary wastewater treatment processes to limit the loads of pharmaceuticals reaching water bodies.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
Ferrate is a promising oxidizing agent for water treatment. Understanding the reaction characteristics and transformation mechanism of high-valent intermediate irons [Fe(V) and Fe(IV)] remains challenging. Here, we systematically investigated the roles of Fe(VI), Fe(V), and Fe(IV) species for acetaminophen oxidation using reaction kinetics, products, and stoichiometries.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Metallurgy, Federal University of Rio Grande do Sul (UFRGS), Engineering School, Av. Bento Gonçalves, 9500, Porto Alegre, Agronomia, 91501-970, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!