Skin-like flexible membrane with excellent water resistance and moisture permeability is an urgent need in the wound dressing field to provide comfort and protection for the wound site. Despite efforts that have been made in the development of waterproof and breathable (W&B) membranes, the in-situ electrospinning of W&B membranes suitable for irregular wound surfaces as wound dressings still faces huge challenges. In the current work, a portable electrospinning device with multi-functions, including adjustable perfusion speed for a large range from 0.05 mL/h to 10 mL/h and high voltage up to 11 kV, was designed. The thymol-loaded ethanol-soluble polyurethane (EPU) skin-like W&B nanofibrous membranes with antibacterial activity were fabricated via the custom-designed device. Ultimately, the resultant nanofibrous membranes composed of EPU, fluorinated polyurethane (FPU), and thymol presented uniform structure, robust waterproofness with the hydrostatic pressure of 17.6 cm HO, excellent breathability of 3.56 kg m d, the high tensile stress of 1.83 MPa and tensile strain of 453%, as well as high antibacterial activity. These results demonstrate that the new-type device has potential as a portable electrospinning apparatus for the fabrication of antibacterial membranes directly on the wound surface and puts a new way for the development of portable electrospinning devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.02.048 | DOI Listing |
Mater Today Bio
December 2024
Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, China.
Gram-negative bacteria infections in diabetic wounds are complicated to control, leading to amputation and even death in severe cases. There is an urgent need to develop effective therapeutic strategies. In recent years, electrospinning has attracted much attention due to its resemblance to extracellular matrix (ECM), which can regulate local cellular proliferation, migration, differentiation, etc.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
One novel nanofiber membrane was fabricated which could detect Fe with the help of either fluorescence spectrometer or smartphone. Coffee grounds carbon dots (CCDs) were prepared by the solvent-thermal method, followed by the fabrication of CCDs/polyamide 56 (PA56) composite nanofiber membrane through electrospinning process. The 4 % CCDs/PA56 composite nanofiber membrane (FNM4) maintained good fluorescence performance (λ = 554 nm, λ = 470 nm) even after 5-runs quenching-recovery cycles.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:
On construction sites impacted by particulate matter and hazardous gases, portable integrated air filtration equipment with high efficiency, minimal pressure drops and ammonia (NH) alarms is critical. Triboelectric nanogenerators (TENG) present a sustainable solution by generating self-powered electricity to fulfill these requirements. In this study, we synthesized zeolitic imidazolate framework-8 (ZIF-8) in situ on the surface of titanium carbide (TiCT) to create TiCT/ZIF-8, grafted it onto cellulose diacetate via tetraethyl orthosilicate, and ultimately developed a cellulose-based nanofibrous membrane through electrospinning, combining it with a negative triboelectric material to construct a self-powered TENG-based mask.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, 75005, France.
Phototherapy is a low-risk alternative to traditional antibiotics against drug-resistant bacterial infections. However, optimizing phototherapy agents, refining treatment conditions, and addressing misuse of agents, remain a formidable challenge. This study introduces a novel concept leveraging the unique customizability of metal-organic frameworks (MOFs) to house size-matched dye molecules in "single rooms".
View Article and Find Full Text PDFFoods
October 2024
China Innovation Instrument Co., Ltd., Ningbo 315000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!