A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism. | LitMetric

Cartilage rehydration: The sliding-induced hydrodynamic triggering mechanism.

Acta Biomater

Department of Mechanical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom.

Published: April 2021

Loading-induced cartilage exudation causes loss of fluid from the tissue, joint space thinning and, in a long term prospective, the insurgence of osteoarthritis. Fortunately, experiments show that joints recover interstitial fluid and thicken during articulation after static loading, thus reversing the exudation process. Here, we provide the first original theoretical explanation to this crucial phenomenon, by implementing a numerical model capable of accounting for the multiscale porous lubrication occurring in joints. We prove that sliding-induced rehydration occurs because of hydrodynamic reasons and is specifically related to a wedge effect at the contact inlet. Furthermore, numerically predicted rehydration rates are consistent with experimentally measured rates and corroborate the robustness of the model here proposed. The paper provides key information, in terms of fundamental lubrication multiscale mechanisms, to understand the rehydration of cartilage and, more generally, of any biological tissue exhibiting a significant porosity: such a theoretical framework is, thus, crucial to inform the design of new effective cartilage-mimicking biomaterials. STATEMENT OF SIGNIFICANCE: Motion and, precisely, joints articulation ensures that cartilage tissues preserve adequate level of hydration and, thus, maintain excellent mechanical properties in terms of high resilience, considerable load-carrying capacity and remarkably low friction. Conversely, when statically loaded, cartilage starts to exudate, causing joint space thinning and, in the long term, possible osteoarthritis; joints motion is, thus, the key to prevent the degradation of the tissues. By developing a numerical multiscale lubrication theory, and by corroborating this approach with experiments, we provide the first original theoretical explanation to this motion-induced cartilage rehydration mechanism. Assessing the rehydration hydrodynamic origin is, in fact, fundamental not only to understand the joints physiology, but also to highlight a key requirement for cartilage-mimicking biomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.02.040DOI Listing

Publication Analysis

Top Keywords

cartilage rehydration
8
joint space
8
space thinning
8
thinning long
8
long term
8
provide original
8
original theoretical
8
theoretical explanation
8
cartilage-mimicking biomaterials
8
cartilage
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!