Acrolein-conjugated proteomics in brains of adult C57BL/6 mice chronically exposed to acrolein and aged APP/PS1 transgenic AD mice.

Toxicol Lett

School of Medicine, Sun Yat-Sen University, Guangzhou, 518000, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, China; International Joint Laboratoryof Novel Anti-Dementia Drugs of Guangzhou, Guangzhou, China. Electronic address:

Published: June 2021

Acrolein is a universal contaminant with high nucleophilicity in environment and also an endogenous product from lipid peroxidation or polyamine metabolism. Acrolein can react with nucleophilic amino acids, such as cysteines, lysines and histidines via Michael addition. Also, Schiff base products can be formed between acrolein and free amine of lysines. Accumulating evidences demonstrated that acrolein is involved in many diseases, including Alzheimer's disease (AD). Previously we found that oral exposure of acrolein induced AD-like pathology in rats. Here we investigated the acrolein-conjugated proteins in the hippocampus of acrolein-treated mice (3.0 mg/kg/d by gavage for 4 weeks) and aged APP/PS1 mice (the age of 22 months). Acrolein-conjugated proteins were enriched by an aniline-based aldehyde-directed probe, meta-aminophenylacetylene (m-APA). Combined with a quantitative chemoproteomic strategy, 912 proteins were finally identified. Gene ontology analysis revealed several acrolein affected pathways including glycolysis, tricarboxylic acid (TCA) cycle and carbon metabolism. Acrolein are mainly conjugated with 14-3-3 protein and members of small GTPase family in hippocampus. Taken together, our results provide new evidences for the roles of acrolein in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2021.03.001DOI Listing

Publication Analysis

Top Keywords

acrolein
9
aged app/ps1
8
metabolism acrolein
8
acrolein-conjugated proteins
8
acrolein-conjugated proteomics
4
proteomics brains
4
brains adult
4
adult c57bl/6
4
mice
4
c57bl/6 mice
4

Similar Publications

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Ergothioneine, a New Acrolein Scavenger at Elevated Temperature.

J Agric Food Chem

January 2025

Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China.

Acrolein (ACR) present in vivo and in vitro can damage proteins and DNA, linking it to various chronic diseases. In this paper, ergothioneine (EGT), abundant in edible mushrooms, has been studied for its ability to trap ACR and its reaction pathway with ACR at high temperatures using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). We synthesized the adducts (EGT-ACR-1 and EGT-ACR-2), elucidating their structure and reaction site through HRMS and nuclear magnetic resonance.

View Article and Find Full Text PDF

Assessment of potential impacts of chemicals on the environment traditionally involves regulatory standard data requirements for acute aquatic toxicity testing using algae, daphnids and fish (e.g., OECD test guidelines (TG) 201, 202, and 203, respectively), representing different trophic levels.

View Article and Find Full Text PDF

Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.

View Article and Find Full Text PDF

DFT Investigation of the Stereoselectivity of the Lewis-Acid-Catalyzed Diels-Alder Reaction between 2,5-Dimethylfuran and Acrolein.

ACS Omega

January 2025

Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter (NISM), University of Namur, rue de Bruxelles, 61, B-5000 Namur, Belgium.

Density functional theory (DFT) has been enacted to study the Diels-Alder reaction between 2,5-dimethylfuran (2,5-DMF), a direct product of biomass transformation, and acrolein and to analyze its thermodynamics, kinetics, and mechanism when catalyzed by a Lewis acid (LA), in comparison to the uncatalyzed reaction. The uncatalyzed reaction occurs via a typical one-step asynchronous process, corresponding to a normal electron demand (NED) mechanism, where acrolein is an electrophile whereas 2,5-DMF is a nucleophile. The small endo selectivity in solvents of low dielectric constants is replaced by a small exo selectivity in solvents with larger dielectric constants, such as DMSO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!