There are multiple lines of evidence for an impaired sulfur amino acid (SAA) metabolism in autism spectrum disorder (ASD). For instance, the concentrations of methionine, cysteine and S-adenosylmethionine (SAM) in body fluids of individuals with ASD is significantly lower while the concentration of S-adenosylhomocysteine (SAH) is significantly higher as compared to healthy individuals. Reduced methionine and SAM may reflect impaired remethylation pathway whereas increased SAH may reflect reduced S-adenosylhomocysteine hydrolase activity in the catabolic direction. Reduced SAM/SAH ratio reflects an impaired methylation capacity. We hypothesize multiple mechanisms to explain how the interplay of oxidative stress, neuroinflammation, mercury exposure, maternal use of valproate, altered gut microbiome and certain genetic variants may lead to these SAA metabotypes. Furthermore, we also propose a number of mechanisms to explain the metabolic consequences of abnormal SAA metabotypes. For instance in the brain, reduced SAM/SAH ratio will result in melatonin deficiency and hypomethylation of a number of biomolecules such as DNA, RNA and histones. In addition to previously proposed mechanisms, we propose that impaired activity of "radical SAM" enzymes will result in reduced endogenous lipoic acid synthesis, reduced molybdenum cofactor synthesis and impaired porphyrin metabolism leading to mitochondrial dysfunction, porphyrinuria and impaired sulfation capacity. Furthermore depletion of SAM may also lead to the disturbed mTOR signaling pathway in a subgroup of ASD. The proposed "SAM-depletion hypothesis" is an inclusive model to explain the relationship between heterogeneous risk factors and metabotypes observed in a subset of children with ASD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2021.02.018 | DOI Listing |
Toxics
December 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
Bioremediation is widely recognized as a promising and efficient approach for the elimination of Cd from contaminated paddy soils. However, the Cd removal efficacy achieved through this method remains unsatisfactory and is accompanied by a marginally higher cost. Cysteine has the potential to improve the bioleaching efficiency of Cd from soils and decrease the use cost since it is green, acidic and has a high Cd affinity.
View Article and Find Full Text PDFMetabolites
January 2025
School of Biotechnology, Key Laboratory of Carbohydrate Chemistry, Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
Purpose: This study aimed to utilize genetically engineered for the production of ergothioneine (EGT). Given the value of EGT and the application of in enzyme preparation production, we cloned the key enzymes (EanA and EanB) from . Through gene alignment, new ergothioneine synthase genes (EanAN and EanBN) were identified and then expressed in to construct strains.
View Article and Find Full Text PDFFood Res Int
February 2025
Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France. Electronic address:
Tropical peas can be used as both animal feed and human food but the nutritional quality of their proteins for humans is currently poorly documented. Here, 3 varieties of tropical peas were studied at two stages of seed maturity (green or dry): Cajanus Cajan (CC), Vigna Unguiculata (VU) and Lablab Purpureus (LP). Pea seeds were prepared traditionally (soaking and cooking).
View Article and Find Full Text PDFMol Divers
January 2025
Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC.
View Article and Find Full Text PDFFront Microbiol
January 2025
Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!