Signal transduction within crowded cellular compartments is essential for the physiological function of cells. Although the accuracy with which receptors can probe the concentration of ligands has been thoroughly investigated in dilute systems, the effect of macromolecular crowding on the inference of concentration remains unclear. In this work, we develop an algorithm to simulate reversible reactions between reacting Brownian particles. Our algorithm facilitates the calculation of reaction rates and correlation times for ligand-receptor systems in the presence of macromolecular crowding. Using this method, we show that it is possible for crowding to increase the accuracy of estimated ligand concentration based on receptor occupancy. In particular, we find that crowding can enhance the effective association rates between small ligands and receptors to a degree sufficient to overcome the increased chance of rebinding due to caging by crowding molecules. For larger ligands, crowding decreases the accuracy of the receptor's estimate primarily by decreasing the microscopic association and dissociation rates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204222 | PMC |
http://dx.doi.org/10.1016/j.bpj.2021.02.035 | DOI Listing |
Int J Mol Sci
December 2024
Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.
The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS.
View Article and Find Full Text PDFLife (Basel)
November 2024
Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland.
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs).
View Article and Find Full Text PDFA cell's global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume is the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the Fluorescence eXclusion method (FXm) and Quantitative Phase Microscopy (QPM), we investigate CMD dynamics after exposure to sudden media osmolarity change.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.
Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064, St. Petersburg, Russia. Electronic address:
The explosive growth in the number of works addressing the phase separation of intrinsically disordered proteins has driven both the development of new approaches and the optimization of existing methods for biomolecular condensate visualization. In this work, we studied the potential use of the fluorescent dye ANS as a sensor for liquid-liquid phase separation (LLPS), focusing on visualizing condensates formed by the stress-granules scaffold protein G3BP1. Using fluorescence lifetime imaging microscopy (FLIM), we demonstrated that ANS can accumulate in RNA-induced G3BP1 condensates in aqueous solutions, but not in G3BP1 condensates formed under macromolecular crowding conditions in highly concentrated PEG solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!