All biological cell membranes maintain an electric transmembrane potential of around 100 mV, due in part to an asymmetric distribution of charged phospholipids across the membrane. This asymmetry is crucial to cell health and physiological processes such as intracell signaling, receptor-mediated endocytosis, and membrane protein function. Experimental artificial membrane systems incorporate essential cell membrane structures, such as the phospholipid bilayer, in a controllable manner in which specific properties and processes can be isolated and examined. Here, we describe an approach to fabricate and characterize planar, freestanding, asymmetric membranes and use it to examine the effect of headgroup charge on membrane stiffness. The approach relies on a thin film balance used to form a freestanding membrane by adsorbing aqueous phase lipid vesicles to an oil-water interface and subsequently thinning the oil to form a bilayer. We validate this lipid-in-aqueous approach by analyzing the thickness and compressibility of symmetric membranes with varying zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG) content as compared with previous lipid-in-oil methods. We find that as the concentration of DOPG increases, membranes become thicker and stiffer. Asymmetric membranes are fabricated by controlling the lipid vesicle composition in the aqueous reservoirs on either side of the oil. Membrane compositional asymmetry is qualitatively demonstrated using a fluorescence quenching assay and quantitatively characterized through voltage-dependent capacitance measurements. Stable asymmetric membranes with DOPC on one side and DOPC-DOPG mixtures on the other were created with transmembrane potentials ranging from 15 to 80 mV. Introducing membrane charge asymmetry decreases both the thickness and stiffness in comparison with symmetric membranes with the same overall phospholipid composition. These initial successes demonstrate a viable pathway to quantitatively characterize asymmetric bilayers that can be extended to accommodate more complex membranes and membrane processes in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204216 | PMC |
http://dx.doi.org/10.1016/j.bpj.2021.02.036 | DOI Listing |
Front Neurosci
January 2025
School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan City, China.
Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales.
View Article and Find Full Text PDFEmrE is a bacterial membrane-embedded multidrug transporter that functions as an asymmetric homodimer. EmrE is implicated in antibiotic resistance, but is now known to confer either resistance or susceptibility depending on the identity of the small molecule substrate. Here, we report both solution- and solid-state NMR assignments of S64V-EmrE at pH 5.
View Article and Find Full Text PDFJ Nephrol
January 2025
Department of Nephrology, University Hospital Infanta Leonor, Madrid, Spain.
Background: Performing hemodialysis without heparin is still challenging. The objective of the present work was to evaluate the impact on thrombogenicity of the hemodialysis circuit using synthetic membranes compared to the asymmetric cellulose triacetate (ATA) membrane.
Methods: Prospective, multicenter, randomized, crossover, open-label study.
Chem Commun (Camb)
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
Mixed matrix membranes (MMMs) composed of metal-organic frameworks (MOFs) and polymer matrixes have garnered significant attention due to their potential to overcome the permeability-selectivity trade-off inherent in polymeric membranes. Nevertheless, the application and industrial production of MOF-based MMMs have been hindered by issues such as poor interfacial compatibility and cumbersome fabrication processes. Recently, strategies have emerged as promising approaches for fabricating MOF-based MMMs, offering enhanced interfacial compatibility between MOF fillers and polymers, as well as a simplified construction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!