Low levels of oxygen (hypoxia) occurs in many (patho)physiological situations. Adaptation to hypoxia is in part mediated by proteins expressed in the extracellular space that mature in the endoplasmic reticulum (ER) prior to traversing the secretory pathway. The majority of such ER cargo proteins require disulfide bonds for structural stability. Disulfide bonds are formed co- and posttranslationally in a redox relay that requires a terminal electron acceptor such as oxygen. We have previously demonstrated that some ER cargo proteins such as low-density lipoprotein receptor (LDLR) and influenza hemagglutinin (Flu-HA) are unable to complete disulfide bond formation in the absence of oxygen, limiting their ability to pass ER quality control and their ultimate expression. Here, using radioactive pulse-chase immunoprecipitation analysis, we demonstrate that hypoxia-induced ER cargo proteins such as carbonic anhydrase 9 (CA9) and vascular endothelial growth factor A (VEGF-A) complete disulfide bond formation and mature with similar kinetics under hypoxia and normoxia. A global in silico analysis of ER cargo revealed that hypoxia-induced proteins on average contain fewer free cysteines and shorter-range disulfide bonds in comparison to other ER cargo proteins. These data demonstrate the existence of alternative electron acceptors to oxygen for disulfide bond formation in cellulo. However, the ability of different proteins to utilize an oxygen-independent pathway for disulfide bond formation varies widely, contributing to differential gene expression in hypoxia. The superior ability of hypoxia-induced proteins such as VEGF-A and CA9 to mature in hypoxia may be conferred by a simpler disulfide architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065220 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.100505 | DOI Listing |
Nature
January 2025
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia.
Patterning soft materials with cell adhesion motifs can be used to emulate the structures found in natural tissues. While patterning in tissue is driven by cellular assembly, patterning soft materials in the laboratory most often involves light-mediated chemical reactions to spatially control the presentation of cell binding sites. Here we present hydrogels that are formed with two responsive crosslinkers-an anthracene-maleimide adduct and a disulfide linkage-thereby allowing simultaneous or sequential patterning using force and UV light.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Science Education and Research Thiruvananthapuram, Chemistry, Trivandrum, Trivandrum, Trivandrum, 695551, Trivandrum, INDIA.
Recent years have witnessed the rapid growth of combination therapy for the treatment of cancer. Chemo and antisense DNA therapies are two clinically proven and efficient treatment modalities for cancer. However, direct delivery of both chemo and antisense oligonucleotides into the cancerous cells is challenging and hence there is a high demand for the development of new strategies that permit the direct delivery of chemo and antisense therapeutic agents in a targeted fashion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
Chemodynamic therapy (CDT) is an emerging antitumor strategy utilizing iron-initiated Fenton reaction to destroy tumor cells by converting endogenous HO into highly toxic hydroxyl radical (OH). However, the intratumoral overexpressed glutathione (GSH) and deficient acid greatly reduce CDT efficacy because of OH scavenging and decreased OH production efficiency. Even worse, the various physiological barriers, especially in glioma, further put the brakes on the targeted delivery of Fenton agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!