Once-Daily Incremental Vestibular-Ocular Reflex Adaptation Training in Patients With Chronic Peripheral Vestibular Hypofunction: A 1-Week Randomized Controlled Study.

J Neurol Phys Ther

Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, Australia (C.N.R., M.C.S., P.D.C., W.V.C.F., C.J.T., A.A.M.); Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia (C.N.R., A.A.M.); Laboratory of Vestibular NeuroAdaptation, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland (M.C.S.); Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland (M.C.S., A.A.M.); Royal North Shore Hospital, Sydney, Australia (P.D.C.); and School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia (A.A.M.).

Published: April 2021

Background And Purpose: This was a double-blinded randomized controlled study to investigate the effects of once-daily incremental vestibulo-ocular reflex (VOR) training over 1 week in people with chronic peripheral vestibular hypofunction.

Methods: A total of 24 patients with peripheral vestibular hypofunction were randomly assigned to intervention (n = 13) or control (n = 11) groups. Training consisted of either x1 (control) or incremental VOR adaptation exercises, delivered once daily for 15 minutes over 4 days in 1 week. Primary outcome: VOR gain with video-oculography. Secondary outcomes: Compensatory saccades measured using scleral search coils, dynamic visual acuity, static balance, gait, and subjective symptoms. Between-group differences were analyzed with a linear mixed-model with repeated measures.

Results: There was a difference in the VOR gain increase between groups (P < 0.05). The incremental training group gain increased during active (13.4% ± 16.3%) and passive (12.1% ± 19.9%) head impulse testing (P < 0.02), whereas it did not for the control group (P = 0.59). The control group had reduced compensatory saccade latency (P < 0.02). Both groups had similarly improved dynamic visual acuity scores (P < 0.05). Both groups had improved dynamic gait index scores (P < 0.002); however, only the incremental group had improved scores for the 2 walks involving head oscillations at approximately 2 Hz (horizontal: P < 0.05; vertical: P < 0.02), increased gait speed (P < 0.02), and step length (P < 0.01) during normal gait, and improved total Dizziness Handicap Inventory (P < 0.05).

Conclusions: Our results suggest incremental VOR adaptation significantly improves gain, gait with head rotation, balance during gait, and symptoms in patients with chronic peripheral vestibular hypofunction more so than conventional x1 gaze-stabilizing exercises.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A336).

Download full-text PDF

Source
http://dx.doi.org/10.1097/NPT.0000000000000348DOI Listing

Publication Analysis

Top Keywords

peripheral vestibular
16
chronic peripheral
12
vestibular hypofunction
12
once-daily incremental
8
patients chronic
8
randomized controlled
8
controlled study
8
incremental vor
8
vor adaptation
8
vor gain
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!