Objective: To explore the neural difference between children with obstructive sleep apnea (OSA) and healthy controls, together with the relation between this difference and cognitive dysfunction of children with OSA.
Methods: Twenty children with OSA (7.2 ± 3.1 years, apnea hypopnea index (AHI): 16.5 ± 16.6 events/h) and 29 healthy controls (7.7 ± 2.8 years, AHI: 1.7 ± 1.2 events/h) were recruited and matched with age, gender, and handedness. All children underwent resting-state fMRI (rs-fMRI) and T1-wighted imaging. Some children were sedated for MRI scanning. We compared amplitude of low frequency fluctuation (ALFF) and regional homogeneity (ReHo) of children with OSA with those of healthy controls. During resting-state, the former reflects the intensity of the spontaneous neural activities, whereas the latter reflects temporal similarity of the spontaneous neural activities within a local brain region. Pearson correlation analysis was performed between these features of rs-fMRI and cognitive scores among children with OSA.
Results: Compared with controls, children with OSA showed decreased ALFF in the left angular gyrus but increased ALFF in the right insula, and decreased ReHo in the left medial superior frontal gyrus, right lingual gyrus, and left precuneus. Additionally, among children with OSA, the ReHo value in the right lingual gyrus was negatively correlated with FIQ and VIQ, whereas that in the left medial superior frontal gyrus was positively correlated with VIQ.
Conclusions: Children with OSA presented abnormal neural activities in some brain regions and impaired cognitive functions with the former possibly being the neural mechanism of the latter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/sleep/zsab047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!