Plants must coordinate photosynthetic metabolism with the daily environment and adapt rhythmic physiology and development to match carbon availability. Circadian clocks drive biological rhythms which adjust to environmental cues. Products of photosynthetic metabolism, including sugars and reactive oxygen species (ROS), are closely associated with the plant circadian clock, and sugars have been shown to provide metabolic feedback to the circadian oscillator. Here, we report a comprehensive sugar-regulated transcriptome of and identify genes associated with redox and ROS processes as a prominent feature of the transcriptional response. We show that sucrose increases levels of superoxide (O), which is required for transcriptional and growth responses to sugar. We identify circadian rhythms of O-regulated transcripts which are phased around dusk and find that O is required for sucrose to promote expression of TIMING OF CAB1 in the evening. Our data reveal a role for O as a metabolic signal affecting transcriptional control of the circadian oscillator in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7958183 | PMC |
http://dx.doi.org/10.1073/pnas.2020646118 | DOI Listing |
Alzheimers Dement
December 2024
New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
Background: Circadian rhythm disorder is not only a characteristic of neurodegenerative diseases but may participate in driving the pathological development in early stages of these diseases. Transactive response DNA-binding protein of 43 kDa (TDP-43) knockdown and its pathological aggregation are associated with severe neurodegenerative diseases such as amyotrophic lateral sclerosis.
Methods: C57BL/6 mice were sleep deprived and sarcrificed at ZT0, ZT6, ZT12, and ZT18 and detected by Western blots.
Alzheimers Dement
December 2024
Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.
Background: Alzheimer's Disease(AD) patients experience circadian rhythm disorder. The circadian rhythm is synchronized by a master clock, the suprachiasmatic nucleus(SCN), which is spatially well-conserved but a tiny nucleus in the hypothalamus. Little is known about the molecular and pathological changes that occur in the SCN during AD progression.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, San Diego, La Jolla, CA, USA.
Background: Studies using Alzheimer's disease (AD) models suggest that gut bacteria contribute to amyloid pathology and systemic inflammation. Further, gut-derived metabolites serve critical roles in regulating cholesterol, blood-brain barrier permeability, neuroinflammation, and circadian rhythms. Recent studies from the Alzheimer's Disease Neuroimaging Initiative have shown that serum-based gut-derived metabolites are associated with AD biomarkers and cognitive impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands, Maastricht, Netherlands; Gordon Center for Medical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
Background: The brainstem locus coeruleus (LC) is among the first sites of Alzheimer's disease (AD) pathology, accruing hyperphosphorylated tau as early as in young adulthood. Animal studies indicate that the LC is crucially involved in sleep-wake regulation, a recently established factor contributing to AD-related pathophysiological processes. However, the associations between LC integrity and sleep-wake phenotypes in the context of AD pathology remain poorly characterized in humans.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky, Lexington, KY, USA.
Background: Disruption of sleep and circadian rhythms are associated with cognitive decline, preclinical Alzheimer's Disease (AD) pathology, and increased risk of dementia. Alleviating circadian rhythm and sleep disruption may improve cognition and reduce the progression of AD and related dementias (ADRD). Time-restricted eating (TRE), a circadian behavioral intervention that corrects disrupted eating rhythms by aligning food intake to the daytime, has demonstrated improvements in metabolic dysfunction and sleep quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!