The study's purpose was to fabricate a 3-D porous scaffold, in which chitosan was coated onto the pore wall of polycaprolactone (PCL) scaffolds as a bioactive agent to maximize the cell recognition signals, to improve the osteoconductivity of the scaffolds. The pppporogen leaching technique has been modified and used in the fabrication process, comprising of the coating of chitosan over the porogen followed by transferring of coating to the pore wall of the PCL scaffold. The cytotoxicity and hemolysis results indicated chitosan's presence over the surface of the scaffold's pore walls has significantly enhanced its biocompatibility. Scaffolds coated with 2.5 %(w/v) chitosan shows 6.74 % increase in porosity and 207.96 % upsurge in mechanical strength, compared to PCL scaffolds. The Gene-expression also proves the study groups of scaffolds show the minimal osteogenic expression. Therefore, chitosan coating over the scaffold's pore wall's surface opens an unconventional approach for tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2020.117501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!