Preparation of a Novel Millet Straw Biochar-Bentonite Composite and Its Adsorption Property of Hg in Aqueous Solution.

Materials (Basel)

College of Resources and Environment, Shanxi Agricultural University, Taigu District, Jinzhong 030801, China.

Published: February 2021

The remediation of mercury (Hg) contaminated soil and water requires the continuous development of efficient pollutant removal technologies. To solve this problem, a biochar-bentonite composite (CB) was prepared from local millet straw and bentonite using the solution intercalation-composite heating method, and its physical and chemical properties and micromorphology were then studied. The prepared CB and MB (modified biochar) had a maximum adsorption capacity for Hg of 11.722 and 9.152 mg·g, respectively, far exceeding the corresponding adsorption value of biochar and bentonite (6.541 and 2.013 mg·g, respectively).The adsorption of Hg on the CB was characterized using a kinetic model and an isothermal adsorption line, which revealed that the pseudo-second-order kinetic model and Langmuir isothermal model well represented the adsorption of Hg on the CB, indicating that the adsorption was mainly chemical adsorption of the monolayer. Thermodynamic experiments confirmed that the adsorption process of Hg by the CB was spontaneous and endothermic. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and a thermogravimetric analysis (TGA) showed that after Hg was adsorbed by CB, functional groups, such as the -OH group (or C=O, COO-, C=C) on the CB, induced complexation between Hg and -O-, and part of Hg (ii) was reduced Hg (i), resulting in the formation of single or double tooth complexes of Hg-O- (or Hg-O-Hg). Therefore, the prepared composite (CB) showed potential application as an excellent adsorbent for removing heavy metal Hg from polluted water compared with using any one material alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957562PMC
http://dx.doi.org/10.3390/ma14051117DOI Listing

Publication Analysis

Top Keywords

adsorption
9
millet straw
8
biochar-bentonite composite
8
kinetic model
8
preparation novel
4
novel millet
4
straw biochar-bentonite
4
composite adsorption
4
adsorption property
4
property aqueous
4

Similar Publications

Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus's environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur.

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!