The huge amount of solid waste from the brick manufacturing industry can be used as a cement replacement. However, replacement exceeding 10% causes a reduction in strength due to the slowing of the pozzolanic reaction. Therefore, in this study, the pozzolanic potential of brick waste is enhanced using ultrafine brick powder with hydrated lime (HL). A total of six self-compacting paste mixes were studied. HL 2.5% by weight of binder was added in two formulations: 10% and 20% of waste burnt brick powder (WBBP), to activate the pozzolanic reaction. An increase in the water demand and setting time was observed by increasing the replacement percentage of WBBP. It was found that the mechanical properties of mixes containing 5% and 10% WBBP performed better than the control mix, while the mechanical properties of the mixes containing 20% WBBP were found to be almost equal to the control mix at 90 days. The addition of HL enhanced the early-age strength. Furthermore, WBBP formulations endorsed improvements in both durability and rheological properties, complemented by reduced early-age shrinkage. Overall, it was found that brick waste in ultrafine size has a very high degree of pozzolanic potential and can be effectively utilized as a supplementary cementitious material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956721 | PMC |
http://dx.doi.org/10.3390/ma14051109 | DOI Listing |
Sci Adv
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.
View Article and Find Full Text PDFPLoS One
January 2025
Waste Data and Analysis Center, Department of Technology & Society, Stony Brook University, Stony Brook, New York, United States of America.
The composition of solid waste affects technology choices and policy decisions regarding its management. Analyses of waste composition studies are almost always made on a parameter by parameter basis. Multivariate distance techniques can create wholisitic determinations of similarities and differences and were applied here to enhance a series of waste composition comparisons.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, 03, Sri Lanka.
There is increasing scientific interest in the potential links between meditation practice and pro-environmental behaviours. The present research investigates relationships between meditation experience (temporal variables of meditation, five facets of trait mindfulness), positive lifestyle habits (PLH), quality of life (QoL) and per-head carbon footprint (CF) among 25 skilled meditators. Self-reported validated questionnaires were given to a group of native speakers of Sri Lanka to collect data on meditation experience, PLH, and perceived QoL.
View Article and Find Full Text PDFHeliyon
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.
View Article and Find Full Text PDFChempluschem
January 2025
China University of Mining and Technology, School of electrical and power engineering, NO.1, Daxue Road, 221116, Xuzhou, CHINA.
The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!