, also known as the yellow fever mosquito, is the main vector of several arboviruses. In Ecuador, dengue and chikungunya are the most prevalent mosquito-borne diseases. Hence, there is a need to understand the population dynamics and genetic structure of the vector in tropical areas for a better approach towards effective vector control programs. This study aimed to assess the genetic diversity of , through the analyses of the mitochondrial gene ND4, using a combination of phylogenetic and population genetic structure from 17 sites in Ecuador. Results showed two haplotypes in the Ecuadorian populations of . Haplotype 1 was closely related to reported from America, Asia, and West Africa. Haplotype 2 was only related to samples from America. The sampled vectors from the diverse localities showed low nucleotide diversity (π = 0-0.01685) and genetic differentiation (FST = 0.152). AMOVA analyses indicated that most of the variation (85-91%) occurred within populations, suggesting that geographical barriers have little effect on the genetic structure of Ecuadorian populations of . These results agree with the one main population (K = 1) detected by Structure. Vector genetic identity may be a key factor in the planning of vector control strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996963 | PMC |
http://dx.doi.org/10.3390/insects12030200 | DOI Listing |
Neoplasma
December 2024
Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
DNA methylation is recognized as an early event in cancer initiation and progression. This review aimed to compare the methylation status of promoter regions in selected genes across different histological subtypes of non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and the rare but highly aggressive large-cell neuroendocrine carcinoma (LCNEC). A comprehensive literature search was conducted in the PubMed database until August 17, 2024, using standardized keywords to identify reports on promoter methylation in NSCLC.
View Article and Find Full Text PDFGenomic and evolutionary analysis of epidemic porcine hepatitis E virus (HEV) in the Tibetan Plateau was performed. Faecal samples were collected from 216 Tibetan pigs and 78 Tibetan Yorkshire (Large White) and 53 tissue samples from Yorkshire from the Linzhi City slaughterhouse. Total RNA was extracted from faeces and fragments of HEV open reading frame 2 (ORF2) detected by reverse transcription and nested polymerase chain reaction (RT-nPCR) and cloned.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai, Tamil Nadu, 625104, India.
Dwarfism is a major trait for developing lodging-resistant rice cultivars. Gamma irradiation-induced mutagenesis has proven to be an effective method for generating dwarf rice mutants. In this research, we isolated a dwarf mutant from Anna R (4) in the M generation and subsequently stabilized the trait through successive selfing of progeny across the M-M generations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!