iPSCs in Modeling and Therapy of Osteoarthritis.

Biomedicines

Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.

Published: February 2021

Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient's somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917981PMC
http://dx.doi.org/10.3390/biomedicines9020186DOI Listing

Publication Analysis

Top Keywords

articular cartilage
8
stem cells
8
ipscs
4
ipscs modeling
4
modeling therapy
4
therapy osteoarthritis
4
osteoarthritis osteoarthritis
4
osteoarthritis belongs
4
belongs chronic
4
chronic degenerative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!