Managed colonies of European honey bees () are under threat from mite infestation and infection with viruses vectored by mites. In particular, deformed wing virus (DWV) is a common viral pathogen infecting honey bees worldwide that has been shown to induce behavioral changes including precocious foraging and reduced associative learning. We investigated how DWV infection of bees affects the transcriptomic response of the brain. The transcriptomes of individual brains were analyzed using RNA-Seq after experimental infection of newly emerged adult bees with DWV. Two analytical methods were used to identify differentially expressed genes from the ~15,000 genes in the genome. The 269 genes that had increased expression in DWV infected brains included genes involved in innate immunity such as antimicrobial peptides (AMPs), Ago2, and Dicer. Single bee brain NMR metabolomics methodology was developed for this work and indicates that proline is strongly elevated in DWV infected brains, consistent with the increased presence of the AMPs abaecin and apidaecin. The 1361 genes with reduced expression levels includes genes involved in cellular communication including G-protein coupled, tyrosine kinase, and ion-channel regulated signaling pathways. The number and function of the downregulated genes suggest that DWV has a major impact on neuron signaling that could explain DWV related behavioral changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918736 | PMC |
http://dx.doi.org/10.3390/v13020287 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biocybernetics, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Tbilisi, Georgia.
Purpose: This paper reports a study of electromagnetic field (EMF) exposure of several adult insects: a ladybug, a honey bee worker, a wasp, and a mantis at frequencies ranging from 2.5 to 100 GHz. The purpose was to estimate the specific absorption rate (SAR) in insect tissues, including the brain, in order to predict the possible biological effects caused by EMF energy absorption.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France. Electronic address:
In many taxa, increasing attention is being paid to how group living shapes the expression of brain plasticity and behavioural flexibility. In eusocial insects, the lifelong commitment of workers and queens to a reproductive or non-reproductive caste is accompanied by a loss of behavioural totipotency, and often, by the expression of a limited behavioural repertoire in workers due to their specialisation. On the other hand, individuals of solitary species have a broader behavioural repertoire as they have to perform all the tasks themselves.
View Article and Find Full Text PDFFront Psychol
November 2024
Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
Sci Rep
December 2024
Department of Computer Science, Kebri Dehar University, P.O.Box 250, Kebri Dehar, Ethiopia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!