The widely used van 't Hoff linear relation for predicting the osmotic pressure of NaCl solutions may result in errors in the evaluation of key system parameters, which depend on osmotic pressure, in pressure-retarded osmosis and forward osmosis. In this paper, the linear van 't Hoff approach is compared to the solutions using OLI Stream Analyzer, which gives the real osmotic pressure values. Various dilutions of NaCl solutions, including the lower solute concentrations typical of river water, are considered. Our results indicate that the disparity in the predicted osmotic pressure of the two considered methods can reach 30%, depending on the solute concentration, while that in the predicted power density can exceed over 50%. New experimental results are obtained for NanoH2O and Porifera membranes, and theoretical equations are also developed. Results show that discrepancies arise when using the van 't Hoff equation, compared to the OLI method. At higher NaCl concentrations (C > 1.5 M), the deviation between the linear approach and the real values increases gradually, likely indicative of a larger error in van 't Hoff predictions. The difference in structural parameter values predicted by the two evaluation methods is also significant; it can exceed the typical 50-70% range, depending on the operating conditions. We find that the external mass transfer coefficients should be considered in the evaluation of the structural parameter in order to avoid overestimating its value. Consequently, measured water flux and predicted structural parameter values from our own and literature measurements are recalculated with the OLI software to account for external mass transfer coefficients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918311 | PMC |
http://dx.doi.org/10.3390/membranes11020128 | DOI Listing |
Front Plant Sci
December 2024
Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain.
This review focuses on the intricate water relationships between internal and external tissues in growing fruits within the framework of the epidermal growth control hypothesis. It considers the components of water potential, including turgor pressure and osmotic potential of both internal and external tissues, taking into account factors such as fruit growth rate, sugar accumulation, cell wall metabolism, and climacteric. It also examines the effects of environmental conditions, genetic factors, and physiological influences in modifying water relations.
View Article and Find Full Text PDFChemosphere
December 2024
Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China. Electronic address:
The environmental safety and health impacts of nanosilver have attracted much attention due to their continuous detection in water. Although the effects of nanosilver on aquatic organisms have been reported, the ecotoxicity and underlying mechanism of nanosilver in aquatic organisms are not fully understood. Fish gills are the primary target organs of pollutant exposure in aquatic environments, and is important to clarify the impact of nanosilver on aquatic organisms by systematically and comprehensively revealing the effect of nanosilver on fish gills.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany; Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
Changing environmental conditions necessitate rapid adaptation of cytoplasmic and nuclear volumes. We use the slime mold Dictyostelium discoideum, known for its ability to tolerate extreme changes in osmolarity, to assess which role nuclear pore complexes (NPCs) play in achieving nuclear volume adaptation and relieving mechanical stress. We capitalize on the unique properties of D.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.
View Article and Find Full Text PDFIntroduction: This study aimed to analyze the correlation between blood pressure variability (BPV), crystalloid osmotic pressure, and cardiovascular events (CEs) in patients undergoing maintenance hemodialysis (MHD).
Methods: This retrospective analysis was conducted on 71 patients with end-stage kidney disease who underwent hemodialysis at Beilun District People's Hospital from September 2021 to September 2022. The patients were divided into two groups based on the occurrence of CEs: a cardiovascular event group and a non-cardiovascular event group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!