A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury. | LitMetric

Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury.

Int J Mol Sci

The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11529, Taiwan.

Published: February 2021

Aging causes a decline in skeletal muscle function, resulting in a progressive loss of muscle mass, quality, and strength. A weak regenerative capacity is one of the critical causes of dysfunctional skeletal muscle in elderly individuals. The extracellular matrix (ECM) maintains the tissue framework structure in skeletal muscle. As shown by previous reports and our data, the gene expression of ECM components decreases with age, but the accumulation of collagen substantially increases in skeletal muscle. We examined the structural changes in ECM in aged skeletal muscle and found restricted ECM degradation. In aged skeletal muscles, several genes that maintain ECM structure, such as transforming growth factor β (TGF-β), tissue inhibitors of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), and cathepsins, were downregulated. Muscle injury can induce muscle repair and regeneration in young and adult skeletal muscles. Surprisingly, muscle injury could not only efficiently induce regeneration in aged skeletal muscle, but it could also activate ECM remodeling and the clearance of ECM deposition. These results will help elucidate the mechanisms of muscle fibrosis with age and develop innovative antifibrotic therapies to decrease excessive collagen deposition in aged muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924602PMC
http://dx.doi.org/10.3390/ijms22042123DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
aged skeletal
16
muscle
14
muscle injury
12
extracellular matrix
8
collagen deposition
8
skeletal
8
skeletal muscles
8
ecm
7
aged
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!