CD44 Targeted Nanomaterials for Treatment of Triple-Negative Breast Cancer.

Cancers (Basel)

Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.

Published: February 2021

AI Article Synopsis

  • Breast cancer is the second leading cause of cancer-related deaths among American women, with triple-negative breast cancer (TNBC) being particularly challenging due to limited treatment options.
  • A recent study explores a combination therapy that includes JAK/STAT inhibitors and CD44-targeted nanoparticles (CD44-T-PNPs) to improve therapeutic outcomes in TNBC, showing significant promise in reducing cell viability and enhancing survivability.
  • The combination therapy works by downregulating specific proteins and inducing apoptosis in cancer cells, which leads to greater effectiveness in targeting TNBC and could pave the way for more effective treatments in the future.

Article Abstract

Identified as the second leading cause of cancer-related deaths among American women after lung cancer, breast cancer of all types has been the focus of numerous research studies. Even though triple-negative breast cancer (TNBC) represents 15-20% of the number of breast cancer cases worldwide, its existing therapeutic options are fairly limited. Due to the pivotal role of the presence/absence of specific receptors to luminal A, luminal B, HER-2+, and TNBC in the molecular classification of breast cancer, the lack of these receptors has accounted for the aforementioned limitation. Thereupon, in an attempt to participate in the ongoing research endeavors to overcome such a limitation, the conducted study adopts a combination strategy as a therapeutic paradigm for TNBC, which has proven notable results with respect to both: improving patient outcomes and survivability rates. The study hinges upon an investigation of a promising NPs platform for CD44 mediated theranostic that can be combined with JAK/STAT inhibitors for the treatment of TNBC. The ability of momelotinib (MMB), which is a JAK/STAT inhibitor, to sensitize the TNBC to apoptosis inducer (CFM-4.16) has been evaluated in MDA-MB-231 and MDA-MB-468. MMB + CFM-4.16 combination with a combination index (CI) ≤0.5, has been selected for in vitro and in vivo studies. MMB has been combined with CD44 directed polymeric nanoparticles (PNPs) loaded with CFM-4.16, namely CD44-T-PNPs, which selectively delivered the payload to CD44 overexpressing TNBC with a significant decrease in cell viability associated with a high dose reduction index (DRI). The mechanism underlying their synergism is based on the simultaneous downregulation of P-STAT3 and the up-regulation of CARP-1, which has induced ROS-dependent apoptosis leading to caspase 3/7 elevation, cell shrinkage, DNA damage, and suppressed migration. CD44-T-PNPs showed a remarkable cellular internalization, demonstrated by uptake of a Rhodamine B dye in vitro and S0456 (NIR dye) in vivo. S0456 was conjugated to PNPs to form CD44-T-PNPs/S0456 that simultaneously delivered CFM-4.16 and S0456 parenterally with selective tumor targeting, prolonged circulation, minimized off-target distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924562PMC
http://dx.doi.org/10.3390/cancers13040898DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
triple-negative breast
8
cancer
6
tnbc
6
breast
5
cd44
4
cd44 targeted
4
targeted nanomaterials
4
nanomaterials treatment
4
treatment triple-negative
4

Similar Publications

Background: Trastuzumab deruxtecan (T-DXd) has shown promising activity in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) and central nervous system (CNS) involvement. In this updated meta-analysis, we explore the effectiveness of T-DXd in a large subset of patients with HER2-positive BC and CNS disease.

Methods: A systematic search was made on September 16th, 2024, for studies investigating T-DXd in the scenario of HER2-positive BC and brain metastases (BMs) and/or leptomeningeal disease (LMD).

View Article and Find Full Text PDF

Synthesis of complex, multiring, spirocyclic, 1,3-dicarbonyl fused, and highly functionalized 5-phenyl-1-azabicyclo[3.1.0]hexanes (ABCH) has been achieved by an intermolecular reaction of 2-(2'-ketoalkyl)-1,3-indandiones or α,γ-diketo esters with (1-azidovinyl)benzenes under transition metal-free conditions.

View Article and Find Full Text PDF

Supervised Exercise for Patients With Metastatic Breast Cancer: A Cost-Utility Analysis Alongside the PREFERABLE-EFFECT Randomized Controlled Trial.

J Clin Oncol

January 2025

Department of Epidemiology and Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

Purpose: To evaluate the cost utility of a 9-month supervised exercise program for patients with metastatic breast cancer (mBC), compared with control (usual care, supplemented with general activity advice and an activity tracker). Evidence on the cost-effectiveness of exercise for patients with mBC is essential for implementation in clinical practice and is currently lacking.

Methods: A cost-utility analysis was performed alongside the multinational PREFERABLE-EFFECT randomized controlled trial, conducted in 8 centers across Europe and Australia.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Introduction: Personalised prevention offers a promising tool to reduce the impact of non-communicable diseases, which represent a growing health burden worldwide. However, to support the adoption of this innovation it is needed to clarify the current state of available evidence in this area. This work aims to provide an overview of recent publications on personalised prevention for chronic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!