The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases.

Genes (Basel)

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

Published: February 2021

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924180PMC
http://dx.doi.org/10.3390/genes12020300DOI Listing

Publication Analysis

Top Keywords

mitochondrial diseases
16
mitochondrial
6
diseases
5
power yeast
4
yeast modelling
4
modelling human
4
human nuclear
4
nuclear mutations
4
mutations associated
4
associated mitochondrial
4

Similar Publications

The development of multifunctional therapeutic agents is crucial for addressing complex diseases such as Alzheimer's disease. Herein, we report a ruthenium-rhenium (Ru-Re) complex that combines photodynamic therapy (PDT) and carbon monoxide (CO) generation capabilities. The Ru-Re complex shows promising photophysical property and significant therapeutic potential.

View Article and Find Full Text PDF

The global burden of cancer as a major cause of death and invalidity has been constantly increasing in the past decades. Monoamine oxidases (MAO) with two isoforms, MAO-A and MAO-B, are mammalian mitochondrial enzymes responsible for the oxidative deamination of neurotransmitters and amines in the central nervous system and peripheral tissues with the constant generation of hydrogen peroxide as the main deleterious ancillary product. However, given the complexity of cancer biology, MAO involvement in tumorigenesis is multifaceted with different tumors displaying either an increased or decreased MAO profile.

View Article and Find Full Text PDF

Mesenchymal Stromal Cell (MSC) Isolation and Induction of Acute and Replicative Senescence.

Methods Mol Biol

December 2024

Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy.

Mesenchymal stromal cells (MSCs) are a heterogeneous population of non-hematopoietic adult stem cells derived from the embryonic mesoderm. They possess self-renewal and multipotent differentiation capabilities, allowing them to give rise to mesodermal cell types, such as osteoblasts, chondroblasts, and adipocytes, as well as non-mesodermal cells, including neuron-like cells and endothelial cells. MSCs play a vital role in maintaining homeostasis across various tissues by facilitating tissue repair, immune regulation, and inflammatory response balance.

View Article and Find Full Text PDF

Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age.

View Article and Find Full Text PDF

An integrated transcriptomic analysis of brain aging and strategies for healthy aging.

Front Aging Neurosci

December 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.

Background: It is been noted that the expression levels of numerous genes undergo changes as individuals age, and aging stands as a primary factor contributing to age-related diseases. Nevertheless, it remains uncertain whether there are common aging genes across organs or tissues, and whether these aging genes play a pivotal role in the development of age-related diseases.

Methods: In this study, we screened for aging genes using RNAseq data of 32 human tissues from GTEx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!