Application of the MEMS Accelerometer as the Position Sensor in Linear Electrohydraulic Drive.

Sensors (Basel)

Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland.

Published: February 2021

Various distance sensors are used as measuring elements for positioning linear electrohydraulic drives. The most common are magnetostrictive transducers or linear variable differential transformer (LVDT) sensors mounted inside the cylinder. The displacement of the actuator's piston rod is proportional to the change in the value of the current or voltage at the output from the sensor. They are characterized by relatively low measurement noise. The disadvantage of presented sensors is the need to mount them inside the cylinders and the high price. The article presents preliminary research on the replacement of following sensors and the use of a microelectromechanical system (MEMS) accelerometer as a measuring element in the electrohydraulic drive control system. The control consisted of two phases: at first, the signal from the acceleration sensor was analyzed during the actuator movement, based on the value determined from the simplified model implemented on the controller. In the range of motion in which the dynamics were the lowest, the signal was integrated and the obtained value was used in the second phase of motion. In the correction phase, a new set point was determined. Conducting the research required building a dedicated research stand. The author conducted the simulation and experimental research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924068PMC
http://dx.doi.org/10.3390/s21041479DOI Listing

Publication Analysis

Top Keywords

mems accelerometer
8
linear electrohydraulic
8
electrohydraulic drive
8
application mems
4
accelerometer position
4
position sensor
4
sensor linear
4
drive distance
4
sensors
4
distance sensors
4

Similar Publications

This study comprehensively compares dynamic and static forces in reinforced concrete (RC) beams, utilising experimental and finite element analysis (FEA) methodologies. Experimental tests involve monotonic two-point loading of 1 m x 150 mm x 150 mm RC beams using a universal testing machine (UTM). Deflection measurements are taken at three distinct locations (S1-S3) using various sensors, including force resisting sensor (FRS), flex sensor (FLS), MEMS accelerometer, and Piezoelectric sensors.

View Article and Find Full Text PDF

A differential microelectromechanical system (MEMS) quartz resonant accelerometer with a novel oscillating readout circuit is proposed. The phase noise in a piezoelectric quartz resonant accelerometer has been systematically investigated. A high-performance front-end is used to extract the motional charge from a piezoelectric quartz resonator for the first time.

View Article and Find Full Text PDF

Innovative Modeling of IMU Arrays Under the Generic Multi-Sensor Integration Strategy.

Sensors (Basel)

December 2024

Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.

This research proposes a novel modeling method for integrating IMU arrays into multi-sensor kinematic positioning/navigation systems. This method characterizes sensor errors (biases/scale factor errors) for each IMU in an IMU array, leveraging the novel Generic Multisensor Integration Strategy (GMIS) and the framework for comprehensive error analysis in Discrete Kalman filtering developed through the authors' previous research. This work enables the time-varying estimation of all individual sensor errors for an IMU array, as well as rigorous fault detection and exclusion for outlying measurements from all constituent sensors.

View Article and Find Full Text PDF

The article presents accelerations occurring in the human body when falling onto a safety net. An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for objects, including pitch, roll, and yaw. These sensors are made of microelectromechanical systems (MEMS) gyroscopes, accelerometers, and magnetometers.

View Article and Find Full Text PDF
Article Synopsis
  • * A scoping review conducted between late 2023 and early 2024 identified and summarized findings from 31 studies exploring various types of wearable sensors and their effectiveness in fall risk prediction models.
  • * It recommends using specific sensors in certain body positions and suggests that while certain walking tests are useful, further empirical research is necessary to optimize the models for community application.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!