This paper presents results on tribological characteristics for polymer blends made of polybutylene terephthalate (PBT) and polytetrafluoroethylene (PTFE). This blend is relatively new in research as PBT has restricted processability because of its processing temperature near the degradation one. Tests were done block-on-ring tribotester, in dry regime, the variables being the PTFE concentration (0%, 5%, 10% and 15% wt) and the sliding regime parameters (load: 1, 2.5 and 5 N, the sliding speed: 0.25, 0.5 and 0.75 m/s, and the sliding distance: 2500, 5000 and 7500 m). Results are encouraging as PBT as neat polymer has very good tribological characteristics in terms of friction coefficient and wear rate. SEM investigation reveals a quite uniform dispersion of PTFE drops in the PBT matrix. Either considered a composite or a blend, the mixture PBT + 15% PTFE exhibits a very good tribological behavior, the resulting material gathering both stable and low friction coefficient and a linear wear rate lower than each component when tested under the same conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924065 | PMC |
http://dx.doi.org/10.3390/ma14040997 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia.
This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Engineering, PSG Institute of Technology and Applied Research Coimbatore, Coimbatore 641062, India.
In this work, twin-screw extruder and compression moulding techniques were utilized to fabricate polymer blends: polypropylene (PP), polybutadiene (PB), and composites using glass fibre (GF) and flax fibre (FF). During fabrication, the polymer ratios maintained between PP and PB were 90:10, 80:20, and 70:30. Likewise, the composites were fabricated by varying the ratios between the PP, PB, and GF, which were 90PP:10PB:10GF, 80PP:20PB:10GF, and 70PP:30PB:10GF.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical & Industrial Engineering, Rochester Institute of Technology, Dubai 341055, United Arab Emirates.
Additive manufacturing is an attractive technology due to its versatility in producing parts with diverse properties from a single material. However, the process often generates plastic waste, particularly from failed prints, making sustainability a growing concern. Recycling this waste material presents a potential solution for reducing environmental impact while creating new, functional parts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!