Expandable polystyrene (EPS) and expanded polypropylene (EPP) dominate the bead foam market. As the low thermal performance of EPS and EPP limits application at elevated temperatures novel solutions such as expanded polybutylene terephthalate (E-PBT) are gaining importance. To produce parts, individual beads are typically molded by hot steam. While molding of EPP is well-understood and related to two distinct melting temperatures, the mechanisms of E-PBT are different. E-PBT shows only one melting peak and can surprisingly only be molded when adding chain extender (CE). This publication therefore aims to understand the impact of thermal properties of E-PBT on its molding behavior. Detailed differential scanning calorimetry was performed on neat and chain extended E-PBT. The crystallinity of the outer layer and center of the bead was similar. Thus, a former hypothesis that a completely amorphous bead layer enables molding, was discarded. However, the incorporation of CE remarkably reduces the crystallization and re-crystallization rate. As a consequence, the time available for interdiffusion of chains across neighboring beads increases and facilitates crystallization across the bead interface. For E-PBT bead foams, it is concluded that sufficient time for polymer interdiffusion during molding is crucial and requires adjusted crystallization kinetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919499 | PMC |
http://dx.doi.org/10.3390/polym13040582 | DOI Listing |
Int J Biol Macromol
December 2024
College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 433023, China; Agricultural Resources Chemistry and Chemical Utilization Engineering Research Center, Wuhan 430023, China. Electronic address:
Holocellulose was extracted from corn cobs by a deep eutectic solvent and modified by various carboxylic acids. The resulting holocellulose esters were further blended with poly(butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA) by using a solvent casting method to prepare holocellulose ester/PBAT/PLA composites. The mechanical properties of the composites were affected by the length of the ester side chain of the modified holocellulose.
View Article and Find Full Text PDFSci Total Environ
November 2024
National Engineering Research Center of Engineering Plastics and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Hainan Degradable Plastics Technology Innovation Center, Haikou 571137, China. Electronic address:
The development of environmentally responsive biodegradable polymers is a promising solution for balancing the stability and degradability of biodegradable plastics. In this study, a commercial biodegradable polyester, poly(butylene adipate-co-butylene terephthalate) (PBAT), was used as the substrate and was synthetically modified with a small amount of anionic sodium 1-3-isophthalate-5-sulfonate (SIPA) to obtain the ionized random poly(butylene adipate-co-butylene terephthalate-co-butylene 5-sodiosulfoisophthalate) (PBATS). The introduction of the sodium sulfonate ionic group enhanced the mechanical and heat-resistant properties of the material, while significantly improving the hydrophilicity and water absorption of the copolyesters of PBATSs and endowing them with special pH-responsive degradation properties.
View Article and Find Full Text PDFJ Environ Sci (China)
March 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions.
View Article and Find Full Text PDFEnviron Pollut
September 2024
School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China.
The microbial community colonized on microplastics (MPs), known as the 'plastisphere', has attracted extensive concern owing to its environmental implications. Coastal salt marshes, which are crucial ecological assets, are considered sinks for MPs. Despite their strong spatial heterogeneity, there is limited information on plastisphere across diverse environments in coastal salt marshes.
View Article and Find Full Text PDFACS Sustain Chem Eng
June 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland.
Understanding the properties of polymers, such as their crystallinity, is crucial for their material performance and predicting their behavior during and after use, especially in the case of environmentally friendly (bio)degradable polymers, enabling optimized design. In this work, for the first time, a pressure-induced condis crystal-like mesophase of poly(butylene succinate--butylene adipate) (PBSA) is presented. The phase behavior of pressed films obtained from commercial PBSA with 25% butylene adipate units is investigated at various processing temperatures from room temperature to 100 °C, pressed at a pressure of the press jaws and at 2-5 t for 1-5 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!