Graphene's outstanding properties make it a potential material for reinforced cementitious composites. However, its shortcomings, such as easy agglomeration and poor dispersion, severely restrict its application in cementitious materials. In this paper, a highly dispersible graphene (TiO-RGO) with better dispersibility compared with graphene oxide (GO) is obtained through improvement of the graphene preparation method. In this study, both GO and TiO-RGO can improve the pore size distribution of cement mortars. According to the results of the mercury intrusion porosity (MIP) test, the porosity of cement mortar mixed with GO and TiO-RGO was reduced by 26% and 40%, respectively, relative to ordinary cement mortar specimens. However, the TiO-RGO cement mortars showed better pore size distribution and porosity than GO cement mortars. Comparative tests on the strength and durability of ordinary cement mortars, GO cement mortars, and TiO-RGO cement mortars were conducted, and it was found that with the same amount of TiO-RGO and GO, the TiO-RGO cement mortars have nearly twice the strength of GO cement mortars. In addition, it has far higher durability, such as impermeability and chloride ion penetration resistance, than GO cement mortars. These results indicate that TiO-RGO prepared by titanium dioxide (TiO) intercalation can better improve the strength and durability performance of cement mortars compared to GO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919027PMC
http://dx.doi.org/10.3390/ma14040915DOI Listing

Publication Analysis

Top Keywords

cement mortars
44
cement
13
strength durability
12
tio-rgo cement
12
mortars
11
tio-rgo
8
pore size
8
size distribution
8
porosity cement
8
cement mortar
8

Similar Publications

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.

View Article and Find Full Text PDF

The Influence of Mineral Additives on Aggregate Reactivity.

Materials (Basel)

December 2024

Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 Gen. Sylwestra Kaliskiego Str., 00-908 Warsaw, Poland.

In this article, the authors present the results of their research on assessing the effect of selected mineral additives on the alkaline reactivity of aggregates. The main objective of this research was to check whether the reactivity of aggregates that do not meet the standard requirements can be reduced. Due to the decreasing availability of crushed aggregates and the decreasing resources of sand used for cement concrete road surfaces, solutions should be sought that allow the use of lower-grade aggregates.

View Article and Find Full Text PDF

Sisal fiber moisture sensitivity and degradation are treated by alkaline and pozzolanic methods, such as silica fume and kaolin surface coating. However, it is novel that the treatment of sisal fiber by calcined bentonite slurry can coat sisal fiber from moisture and protect it from cement hydration by consuming free lime and reducing cement matrix alkalinity. Therefore, the present study treated sisal fibers with calcined bentonite slurry and investigated the effect of using different lengths and doses of treated and raw sisal fibers in a mortar.

View Article and Find Full Text PDF

In order to improve the performance of cement mortar (Portland cement), it was enriched with triclosan, hypochlorous acid, silver nanoparticles and graphene oxide. Cement mortar is used, among other things, to fill the gaps between the tiles of building porcelain stoneware. A number of structural, mechanical and biological tests were carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!