Current legislation in Italy provides that medical may be administered orally or by inhalation. One of the fundamental criteria for the administration of oral formulations is that they deliver a known consistent quantity of the active ingredients to ensure uniform therapies leading to the optimisation of the risks/benefits. In 2018, our group developed an improved oil extraction technique. The objective of the present work was to carry out a stability study for the oil extracts obtained by this method. Furthermore, in order to facilitate the consumption of the prescribed medical therapy by patients, a standard procedure was defined for the preparation of a single-dose preparation for oral use (hard capsules) containing the oil extract; thereafter, the quality and stability were evaluated. The hard capsules loaded with the oil extract were analysed and found to be uniform in content. The encapsulation process did not alter the quantity of the active molecule present in the oil. The stability tests yielded excellent results. Since the capsule dosage form is easily transported and administered, has pleasant organoleptic properties and is stable at room temperature for extended periods of time, this would facilitate the adherence to therapy by patients in treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7926486PMC
http://dx.doi.org/10.3390/ph14020171DOI Listing

Publication Analysis

Top Keywords

oral formulations
8
quality stability
8
quantity active
8
therapy patients
8
hard capsules
8
oil extract
8
oil
5
-based oral
4
formulations medical
4
medical purposes
4

Similar Publications

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

The pharmaceutical industry cares about reducing toxic side effects of drugs in oral formulation. The best solution is to reduce the drug dose. To do so, drugs are required to have high aqueous solubility to ensure good bioavailability.

View Article and Find Full Text PDF

The Janus kinase inhibitor tofacitinib (TOF) is an FDA-approved drug for rheumatoid arthritis (RA) treatment, but its long-term oral use leads to significant systemic side effects. The present research aimed to conquer these challenges by formulating hyaluronic-acid-coated transethosomes (HA-TOF-TE), a novel system for targeted, topical delivery of TOF to reduce systemic toxicity and improve therapeutic efficacy. Transethosomes were synthesized via the cold sonication technique with HA functionalization enabling CD44 receptor-mediated targeting of inflamed synovial tissue.

View Article and Find Full Text PDF

The present study aimed to optimize a mouth-dissolving film (MDF) made from Pongamia pinnata stem bark extract to increase patient compliance and accelerate oral disease therapy. Several stem bark extracts were prepared, and karanjin was used as an herbal marker for the extracts. The ethanolic extract showed the maximum yield (12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!