Glyphosate detection and quantification is still a challenge. After an extensive review of the literature, we observed that Fourier transform infrared spectroscopy (FTIR) had practically not yet been used for detection or quantification. The interaction between zinc oxide (ZnO), silver oxide (AgO), and Ag-doped ZnO nanocrystals (NCs), as well as that between nanocomposite (Ag-doped ZnO/AgO) and glyphosate was analyzed with FTIR to determine whether nanomaterials could be used as signal enhancers for glyphosates. The results were further supported with the use of atomic force microscopy (AFM) imaging. The glyphosate commercial solutions were intensified 10,000 times when incorporated the ZnO NCs. However, strong chemical interactions between Ag and glyphosate may suppress signaling, making FTIR identification difficult. In short, we have shown for the first time that ZnO NCs are exciting tools with the potential to be used as signal amplifiers of glyphosate, the use of which may be explored in terms of the detection of other molecules based on nanocrystal affinity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922178 | PMC |
http://dx.doi.org/10.3390/nano11020509 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, School of Chemistry and Chemical Engineering, Wushan St., 510640, Guangzhou, CHINA.
An inevitable overoxidation process is considered as one of the most challenging problems in the direct conversion of methane (CH4) to methanol (CH3OH), which is limited by the uncontrollable cracking of key intermediates. Herein, we have successfully constructed a photocatalyst, the Fe-doped ZnO hollow polyhedron (Fe/ZnOHP), for the highly selective photoconversion of CH4 to CH3OH under mild conditions. In-situ experiments and density functional theory calculations confirmed that the introduction of Fe was able to decrease the energy level of the O 2p orbital, which passivated the activity of lattice oxygen in ZnO nanocrystals.
View Article and Find Full Text PDFBiometals
January 2025
Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, Brazil.
Zinc is an essential metal to living organisms, including corals and their symbiotic microalgae (Symbiodiniaceae). Both Zn(II) deprivation and overload are capable of leading to dysfunctional metabolism, coral bleaching, and even organism death. The present work investigated the effects of chemically defined Zn species (free Zn, ZnO nanoparticles, and the complexes Zn-histidinate and Zn-EDTA) over the growth of the dinoflagellates Symbiodinium microadriaticum, Breviolum minutum, and Effrenium voratum, and on the trypsin-like proteolytic activity of the hydrocoral Millepora alcicornis.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!