Tissue engineered scaffold was regarded as a promising approach instead of the autograft. In this study, small diameter electrospun collagen tubular scaffold with random continuous smooth nanofibers was successfully fabricated. However, the dissolution of collagen in concentrated aqueous (conc. aq.) acetic acid caused to the serious denaturation of collagen. A novel method ammonia treatment here was adopted which recovered the collagen triple helix structure according to the analysis of IR spectra. Further dehydrothermal (DHT) and glutaraldehyde (GTA) treatments were applied to introduce the crosslinks to improve the properties of collagen tube. The nanofibrous structure of collagen tube in a wet state was preserved by the crosslinking treatments. Swelling ratio and weight loss decreased by at least two times compared to those of the untreated collagen tube. Moreover, tensile strength was significantly enhanced by DHT treatment (about 0.0076 cN/dTex) and by GTA treatment (about 0.075 cN/dTex). In addition, the surface of crosslinked collagen tube kept the hydrophilic property. These results suggest that DHT and GTA treatments can be utilized to improve the properties of electrospun collagen tube which could become a suitable candidate for tissue engineered scaffold.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957483 | PMC |
http://dx.doi.org/10.3390/polym13050755 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!