The efficiency of a centrifugal pump for mechanical pump fluid loops, apart from the design, relies on the performance of the closed impeller which is linked to the manufacturing process in terms of dimensional accuracy and the surface quality. Therefore, the activities of this paper were focused on defining the manufacturing process of a closed impeller using the additive manufacturing technology for mechanically pumped fluid loop (MPFL) systems in space applications. Different building orientations were studied to fabricate three closed impellers using selective laser melting technology and were subjected to dimensional accuracy and surface quality evaluations in order to identify the optimal building orientation. The material used for the closed impeller is Inconel 625. The results showed that both geometrical stability and roughness were improved as the building orientation increased, however, the blade thickness presented small deviations, close to imposed values. Finishing processes for inaccessible areas presented significant results in terms of roughness, nevertheless, the process can be further improved. Abrasive flow machining (AFM) post-processing operations have been considered and the results show major improvements in surface quality. Thus, important steps were made towards the development of complex structural components, consequently increasing the technological readiness level of the additive manufacturing process for space applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922401PMC
http://dx.doi.org/10.3390/ma14040967DOI Listing

Publication Analysis

Top Keywords

manufacturing process
16
additive manufacturing
12
closed impeller
12
surface quality
12
mechanically pumped
8
pumped fluid
8
fluid loop
8
dimensional accuracy
8
accuracy surface
8
space applications
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!