Investigation on Wireless Link for Medical Telemetry Including Impedance Matching of Implanted Antennas.

Sensors (Basel)

Department of Electronics and Electrical Engineering, Hongik University, Seoul 04066, Korea.

Published: February 2021

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient's vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922892PMC
http://dx.doi.org/10.3390/s21041431DOI Listing

Publication Analysis

Top Keywords

impedance matching
12
link medical
8
medical telemetry
8
radio transmission
8
characteristics impedance
8
antenna coupling
8
human body
8
investigation wireless
4
wireless link
4
telemetry including
4

Similar Publications

Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage.

Materials (Basel)

December 2024

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.

View Article and Find Full Text PDF

Prone positioning is a therapeutic strategy for severe Acute Respiratory Distress Syndrome (ARDS). In COVID-19-associated ARDS (CARDS), the application of prone position has shown varying responses, influenced by factors such as lung recruitability and SARS-CoV-2-induced pulmonary endothelial dysfunction. This study aimed to compare the early impact of pronation on lung ventilation-perfusion matching (VQmatch) in CARDS and non-COVID-19 ARDS patients (non-CARDS).

View Article and Find Full Text PDF

Aerodynamic and Acoustic Power in Infant Cry.

J Voice

January 2025

Utah Center for Vocology, University of Utah, Salt Lake City, UT; National Center for Voice and Speech, Salt Lake City, UT. Electronic address:

Objectives: Acoustic and aerodynamic powers in infant cry are not scaled downward with body size or vocal tract size. The objective here was to show that high lung pressures and impedance matching are used to produce power levels comparable to those in adults.

Study Design And Methodology: A computational model was used to obtain power distributions along the infant airway.

View Article and Find Full Text PDF

Presently, researchers are placing emphasis on microwave absorption coating design while neglecting the research on materials that integrate both microwave absorption performance and mechanical properties. Here, robust FeSiAl/PEEK composites were prepared by a series process, including post ball-milling annealing, sol-gel method, and hot pressing. A detailed analysis of the electromagnetic (EM) parameters reveals the significant effects of morphology, filling ratio, and microstructure of FeSiAl on EM losses under a wide-temperature range.

View Article and Find Full Text PDF

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!