A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Energy-Efficient UWB Transmitter with Wireless Injection Locking for RF Energy-Harvesting Sensors. | LitMetric

An Energy-Efficient UWB Transmitter with Wireless Injection Locking for RF Energy-Harvesting Sensors.

Sensors (Basel)

Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon 16499, Korea.

Published: February 2021

An ultralow-power ultrawideband (UWB) transmitter with an energy-efficient injection-locked radio frequency (RF) clock harvester that generates a carrier from an RF signal is proposed for RF energy-harvesting Internet-of-Things (IoT) sensor applications. The energy-efficient RF clock harvester based on the injection-locked ring oscillator (ILRO) is proposed to achieve optimal locking range and minimum input sensitivity to obtain an injection-locked 450 MHz clock in ultralow-power operation. A current-starved inverter-based delay stage is adopted that allows delay adjustment by bias voltage to minimize dynamic current consumption while maintaining a constant delay regardless of changes in process, supply voltage, and temperature (PVT). To minimize static current consumption, a UWB transmitter based on a digital-based UWB pulse generator and a pulse-driven switching drive amplifier is proposed. The proposed injection-locked RF clock harvester achieves the best RF input sensitivity of -34 dBm at a power consumption of 2.03 μW, enabling energy-efficient clock harvesting from low RF input power. In ultralow-power operation, a 23.8% locking range is achieved at the RF injection power of -15 dBm to cope with frequency changes due to PVT variations. The proposed UWB transmitter with RF clock harvester achieves the lowest energy consumption per pulse with an average power consumption of 97.03 μW and an energy consumption of 19.41 pJ/pulse, enabling operation with the energy available in RF energy-harvesting applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922016PMC
http://dx.doi.org/10.3390/s21041426DOI Listing

Publication Analysis

Top Keywords

uwb transmitter
16
clock harvester
16
energy-efficient clock
8
locking range
8
input sensitivity
8
ultralow-power operation
8
current consumption
8
harvester achieves
8
power consumption
8
energy consumption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!