The influence of SiO/TiO nanocomposites (STNCs) content on non-radiative energy transfer (Förster-type) from poly (9,9'-dioctylfluorene-2,7-diyl) (PFO) to poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) using steady-state and time-resolved photoluminescence spectroscopies was investigated at room temperature. The improved energy transfer from PFO to MEH-PPV upon an increment of the STNCs was achieved by examining absorbance, emission (PL) and photoluminescence excitation (PLE) spectra. The shorter values of the quantum yield (φ) and lifetime (τ) of the PFO in the hybrid thin films compared with the pure PFO, indicating efficient energy transfer from PFO to MEH-PPV with the increment of STNCs in the hybrid. The energy transfer parameters can be tuned by increment of the STNCs in the hybrid of PFO/MEH-PPV. The Stern-Volmer value (k), quenching rate value (k), Förster radius (R), distance between the molecules of PFO and MEH-PPV (R), energy transfer lifetime (τ), energy transfer rate (k), total decay rate of the donor (TDR), critical concentration (A), and conjugation length (A) were calculated. The gradually increasing donor lifetime and decreasing acceptor lifetime, upon increasing the STNCs content, prove the increase in conjugation length and meanwhile enhance in the energy transfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922813PMC
http://dx.doi.org/10.3390/polym13040611DOI Listing

Publication Analysis

Top Keywords

energy transfer
28
pfo meh-ppv
12
increment stncs
12
sio/tio nanocomposites
8
stncs content
8
transfer pfo
8
meh-ppv increment
8
stncs hybrid
8
conjugation length
8
energy
7

Similar Publications

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

A photosynthesis-derived bionic system for sustainable biosynthesis.

Angew Chem Int Ed Engl

January 2025

Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.

"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.

View Article and Find Full Text PDF

Integrating Enzymes with Reticular Frameworks To Govern Biocatalysis.

Angew Chem Int Ed Engl

January 2025

Sun Yat-Sen University, School of Chemistry, 135 Xingang West, 510275, Guangzhou, CHINA.

Integrating enzymes with reticular frameworks offers promising avenues for access to functionally tailorable biocatalysis. This Minireview explores recent advances in enzyme-reticular frameworks hybrid biocomposites, focusing on the utilization of porous reticular frameworks, including metal-organic frameworks, covalent-organic frameworks, and hydrogen-bonded organic frameworks, to regulate the reactivity of an enzyme encapsulated inside mainly by pore infiltration and in situ encapsulation strategies. We highlight how pore engineering and host-guest interfacial interactions within reticular frameworks create tailored microenvironments that substantially impact the mass transfer and enzyme's conformation, leading to biocatalytic rate enhancement, or imparting enzyme with non-native biocatalytic functions including substrate-selectivity and new activity.

View Article and Find Full Text PDF

Aims: The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA).

Methods And Results: Through fluorescence resonance energy transfer (FRET) screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/mL.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!