Background: There is recent in vivo discovery documenting the carcinogenic effect of bile at strongly acidic pH 3.0 in hypopharynx, while in vitro data demonstrate that weakly acidic bile (pH 5.5) has a similar oncogenic effect. Because esophageal refluxate often occurs at pH > 4.0, here we aim to determine whether weakly acidic bile is also carcinogenic in vivo.

Methods: Using 32 wild-type mice C57B16J, we performed topical application of conjugated primary bile acids with or without unconjugated secondary bile acid, deoxycholic acid (DCA), at pH 5.5 and controls, to hypopharyngeal mucosa (HM) twice per day, for 15 weeks.

Results: Chronic exposure of HM to weakly acidic bile, promotes premalignant lesions with microinvasion, preceded by significant DNA/RNA oxidative damage, γH2AX (double strand breaks), NF-B and p53 expression, overexpression of -2, and elevated and mRNAs, compared to controls. Weakly acidic bile, without DCA, upregulates the "oncomirs", -21 and -155. The presence of DCA promotes , , and overexpression, and a significant downregulation of "tumor suppressor" -451a.

Conclusion: Weakly acidic pH increases the risk of bile-related hypopharyngeal neoplasia. The oncogenic properties of biliary esophageal reflux on the epithelium of the upper aerodigestive tract may not be fully modified when antacid therapy is applied. We believe that due to bile content, alternative therapeutic strategies using specific inhibitors of relevant molecular pathways or receptors may be considered in patients with refractory GERD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923205PMC
http://dx.doi.org/10.3390/cancers13040852DOI Listing

Publication Analysis

Top Keywords

weakly acidic
24
acidic bile
20
bile
9
weakly
6
acidic
6
bile risk
4
risk factor
4
factor hypopharyngeal
4
hypopharyngeal carcinogenesis
4
carcinogenesis evidenced
4

Similar Publications

Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity.

Precis Chem

December 2024

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (// = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA ( ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA ( ≈ 32%).

View Article and Find Full Text PDF

pH-Adjusted Liquid SERS Approach: Toward a Reliable Plasma-Based Early Stage Lung Cancer Detection.

Anal Chem

December 2024

College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.

Surface-enhanced Raman spectroscopy (SERS) provides a rapid and nondestructive method for biological plasma analysis, offering unparalleled sensitivity and specificity. However, most current studies predominantly employ the drop-cast method, where liquid samples are dried on the SERS substrate for spectral recording. While effective, this method is both time-consuming and inconsistent.

View Article and Find Full Text PDF

The safety and cycling stability of potassium-ion batteries (PIBs) are deeply associated with potassium-ion electrolytes. However, due to the weak Lewis acidity of potassium ions, localized high-concentration electrolytes in PIBs are prone to excessive weak solvation. Herein, we propose an entropy repair strategy for the solvation structure of potassium ions and systematically design a moderately weakly solvated high-entropy localized high-concentration electrolyte.

View Article and Find Full Text PDF

Nucleocapsid protein (N) of SARS-CoV-2 is a multivalent protein, which is responsible for viral replication, assembly, packaging and modulates host immune response. In this study, we report conformational measurements of N protein at different pH by observing transition in secondary and tertiary structural contents by biophysical and computational approaches. Spectroscopic measurements revealed that N protein loses its secondary and tertiary structure at extreme acidic pH while maintaining its native conformation at mild acidic and alkaline pH.

View Article and Find Full Text PDF

Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as model and demonstrated that unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!