The rheological properties of tamarind seed polymer are characterized for its possible commercialization in the food and pharmaceutical industry. Seed polymer was extracted using water as a solvent and ethyl alcohol as a precipitating agent. The temperature's effect on the rheological behavior of the polymeric solution was studied. In addition to this, the temperature coefficient, viscosity, surface tension, activation energy, Gibbs free energy, Reynolds number, and entropy of fusion were calculated by using the Arrhenius, Gibbs-Helmholtz, Frenkel-Eyring, and Eotvos equations, respectively. The activation energy of the gum was found to be 20.46 ± 1.06 kJ/mol. Changes in entropy and enthalpy were found to be 23.66 ± 0.97 and -0.10 ± 0.01 kJ/mol, respectively. The calculated amount of entropy of fusion was found to be 0.88 kJ/mol. A considerable decrease in apparent viscosity and surface tension was produced when the temperature was raised. The present study concludes that the tamarind seed polymer solution is less sensitive to temperature change in comparison to gum, gum and gum. This study also concludes that the attainment of the transition state of viscous flow for tamarind seed gum is accompanied by bond breaking. The excellent physicochemical properties of tamarind seed polymers make them promising excipients for future drug formulation and make their application in the food and cosmetics industry possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923174PMC
http://dx.doi.org/10.3390/polym13040610DOI Listing

Publication Analysis

Top Keywords

tamarind seed
16
viscosity surface
12
surface tension
12
seed polymer
12
properties tamarind
8
activation energy
8
entropy fusion
8
study concludes
8
gum gum
8
tamarind
5

Similar Publications

Tamarind ( L.) Components as a Sustainable Replacement for Pork Meat in Frankfurter Sausages.

Foods

January 2025

Laboratório de Indústria e Inspeção de Carnes e Derivados, Universidade Federal da Bahia, Salvador 40170-115, Brazil.

Five types of frankfurters were formulated: a control without tamarind (T0) and four samples using 5% tamarind pulp paste (PT5), seeds (ST5), peel (CT5), and a blend of all of them (PSCT5), replacing the same portion of meat. The inclusion of tamarind components led to a reduction in the moisture and protein content of the reformulated frankfurters. In terms of mineral composition, CT5 showed the highest ( < 0.

View Article and Find Full Text PDF

This study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.

View Article and Find Full Text PDF

The current investigation intended to assess the controlled delivery of 7-sulfonamide-2-(4-methylphenyl) imidazo[2,1-b] [1, 3] benzothiazole an anticancer agent (ACA) by tamarind seed gum-based hydrogel; for its potential activity against hepatocellular carcinoma. The FTIR spectra, SEM, C NMR, PXRD, and TGA analyses evidenced the successful loading of ACA into the hydrogel system. The rheological testing conveyed the increase in the elastic nature of ACA-loaded hydrogel helping in an effective release.

View Article and Find Full Text PDF

This study presents a feasible, one-pot synthesis approach for the preparation of a composite biopolymer material derived from tamarind seed xyloglucan (XG) by utilizing isocyanate chemistry. Through a facile reaction process, urethane bonds are formed in XG, resulting in the formation of a crosslinked network. FTIR spectra confirm the successful urethane link formation in XG via the OH-NCO reaction, and CHN analysis provides insights into the elemental composition.

View Article and Find Full Text PDF

Tamarind seed polysaccharide (TSP) is a neutral water-soluble galactoxyloglucan isolated from the seed kernel of with average molecular weight (Mw) 600-800 kDa. The high viscosity of TSP slows solubilisation, and the absence of charged substituent hinders the formation of electrostatic interactions with biomolecules. TSP was sulphated in a one-step process using dimethylformamide as a solvent, and sulphur trioxide-pyridine complex as a sulphating reagent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!