New research applications involving the use of cellulosic material derived from maize stalk for on-site treatment of leachate were evaluated for specific removal of Cu(II) and Fe(III) from real, highly polluted tailing pond and mine wastewater samples. Two major issues generated by anthropic mining activities were also tackled: wastewater metal content decrease to improve water quality and subsequently metal specific recovery, increasing the economic efficiency of metal production by using a green technology for residual management. Rapid saturation of the maize stalk mass determined in batch studies and the mine pilot experiment led to diminished metal concentrations in the second pilot experiment, where Cu(II) and Pb(II) from synthetic solutions were monitored in order to test biomaterial performances. In addition, in the second pilot experiment, maize stalk removed Pb(II) in the first 36 h, below the determination limit of the analytical method. The biomaterial bed in the column was saturated after 252 h of inflow solution. FTIR-ATR, TG and SEM techniques probed the interaction between maize stalk polar groups C=O, -OH, C-O and tailing water metallic ions by large FTIR band displacements, intensity decrease and shape changes, modification of thermal stability and by changes in the appearance of adsorbent microstructure images owing mainly to ion exchange mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7922871 | PMC |
http://dx.doi.org/10.3390/ma14040956 | DOI Listing |
Bioresour Technol
January 2025
Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, PR China. Electronic address:
Biomass staged gasification technology (BSGT) divides the traditional gasification into medium-temperature devolatilization (MTD) stage, high-temperature gasification (HTG) stage and high-temperature reforming (HTR) stage. The present study conducted MTD and HTG experiments on corn stalks and focused on the effect of MTD at 200-550 °C on the reforming performance of BSGT liquid products through component analysis and simulation. The results demonstrate that the MTD temperature above 350 °C could prevent the participation of phenols and oxygen in HTG and HTR stages, respectively, thereby improving the reforming performance of BSGT liquid products and the quality of BSGT syngas.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
Plant mechanical failure, known as lodging, has detrimental impacts on the quality and quantity of maize yields. Failure can occur at stalks (stalk lodging) or at roots (root lodging). While previous research has focused on proxy measures for stalk stiffness, stalk strength, and root strength, there is a need to quantify the root system stiffness, which quantifies the force-displacement relationship.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Pesticide Residue Analysis Laboratory, Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab, India.
Validation of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method was performed for estimation of imidacloprid (IM) and its metabolites in maize leaves, immature kernels, mature kernels, stalk, and soil using liquid chromatograph tandem mass spectrometry, coupled with electrospray ionization. The extraction in different matrices of maize and soil was performed using acetonitrile +0.1% formic acid followed by clean-up with primary secondary amine sorbent and anhydrous magnesium sulfate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!