Syntrophic Hydrocarbon Degradation in a Decommissioned Off-Shore Subsea Oil Storage Structure.

Microorganisms

Shell International Exploration and Production Inc., Houston, TX 77082, USA.

Published: February 2021

Over the last decade, metagenomic studies have revealed the impact of oil production on the microbial ecology of petroleum reservoirs. However, despite their fundamental roles in bioremediation of hydrocarbons, biocorrosion, biofouling and hydrogen sulfide production, oil field and oil production infrastructure microbiomes are poorly explored. Understanding of microbial activities within oil production facilities is therefore crucial for environmental risk mitigation, most notably during decommissioning. The analysis of the planktonic microbial community from the aqueous phase of a subsea oil-storage structure was conducted. This concrete structure was part of the production platform of the Brent oil field (North Sea), which is currently undergoing decommissioning. Quantification and sequencing of microbial 16S rRNA genes, metagenomic analysis and reconstruction of metagenome assembled genomes (MAGs) revealed a unique microbiome, strongly dominated by organisms related to and . Consistent with the hydrocarbon content in the aqueous phase of the structure, a strong potential for degradation of low molecular weight aromatic hydrocarbons was apparent in the microbial community. These degradation pathways were associated with taxonomically diverse microorganisms, including the predominant and lineages, expanding the list of potential hydrocarbon degraders. Genes associated with direct and indirect interspecies exchanges (multiheme type-C cytochromes, hydrogenases and formate/acetate metabolism) were widespread in the community, suggesting potential syntrophic hydrocarbon degradation processes in the system. Our results illustrate the importance of genomic data for informing decommissioning strategies in marine environments and reveal that hydrocarbon-degrading community composition and metabolisms in man-made marine structures might differ markedly from natural hydrocarbon-rich marine environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916938PMC
http://dx.doi.org/10.3390/microorganisms9020356DOI Listing

Publication Analysis

Top Keywords

oil production
12
syntrophic hydrocarbon
8
hydrocarbon degradation
8
oil field
8
microbial community
8
aqueous phase
8
marine environments
8
oil
6
production
5
microbial
5

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

University of Georgia, College of Pharmacy, Athens, GA, USA.

Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.

View Article and Find Full Text PDF

Occupational exposures to respirable dusts and respirable crystalline silica (RCS) is well established as a health hazard in many industries including mining, construction, and oil and gas extraction. The U.S.

View Article and Find Full Text PDF

Controls of the Nucleation Rate and Advection Rate on Barite Precipitation in Fractured Porous Media.

Langmuir

January 2025

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.

Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization.

View Article and Find Full Text PDF

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Antioxidant activity analysis of new interspecific hybrid germplasm thyme and oregano essential oils with different chemotypes.

BMC Plant Biol

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Thyme and oregano essential oils (EOs) and their components have numerous applications in the pharmaceutical, food, and cosmetic industries owing to their antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and immunological properties. We attempted to create new chemotypes through the hybridization of thyme and oregano for functional EO research and product development. Here, we used interspecific hybridization to create new thyme and oregano germplasms with new EO chemotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!