Microbial reactor sensors (based on freshly harvested intact microbial cells) or microbial membrane sensors (based on immobilized microbial cells) can be used as convenient instruments for studying processes that cause the response of a biosensor, such as the properties of enzymes or the characteristics of metabolism. However, the mechanisms of the formation of biosensors responses have not yet been fully understood to study only one of these processes. In this work, the results of studies on the formation of a response to juglone for intact and immobilized bacterial cells used as receptors are presented. It was shown that the contribution of reactive oxygen species (ROS) to the formation of the biosensor response depends on the culture receptor and the form of juglone, quinone, or phenolate used. The response to the quinone form of juglone both for intact and immobilized cells of catalase-positive actinobacterium is formed regardless of the presence of ROS. The response of freshly harvested intact actinobacterial cells was caused by the rate of the enzymatic conversion of juglone. The rate of the response of immobilized actinobacterial cells was influenced by the activity of transport systems and metabolism. The response of immobilized pseudomonad cells was caused by the transport of juglone into cells, the inhibitory effect of juglone-induced ROS, and juglone metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924839 | PMC |
http://dx.doi.org/10.3390/bios11020056 | DOI Listing |
J Biol Inorg Chem
June 2024
Department of Chemistry, National Institute of Technology, Rourkela, Odisha, 769008, India.
Ferritins are multimeric nanocage proteins that sequester/concentrate excess of free iron and catalytically synthesize a hydrated ferric oxyhydroxide bio-mineral. Besides functioning as the primary intracellular iron storehouses, these supramolecular assemblies also oversee the controlled release of iron to meet physiologic demands. By virtue of the reducing nature of the cytosol, reductive dissolution of ferritin-iron bio-mineral by physiologic reducing agents might be a probable pathway operating in vivo.
View Article and Find Full Text PDFBiosensors (Basel)
February 2021
Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Center for Biological Research of the Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia.
Microbial reactor sensors (based on freshly harvested intact microbial cells) or microbial membrane sensors (based on immobilized microbial cells) can be used as convenient instruments for studying processes that cause the response of a biosensor, such as the properties of enzymes or the characteristics of metabolism. However, the mechanisms of the formation of biosensors responses have not yet been fully understood to study only one of these processes. In this work, the results of studies on the formation of a response to juglone for intact and immobilized bacterial cells used as receptors are presented.
View Article and Find Full Text PDFPhysiol Int
December 2016
2 Department of Biochemistry, Yanka Kupala State University of Grodno, Grodno, Belarus.
Quinones are among the rare compounds successfully used as therapeutic agents to correct mitochondrial diseases and as specific regulators of mitochondrial function within cells. The aim of the present study was to elucidate the redox-dependent effects of quinones on mitochondrial function. The functional parameters [respiratory activity, membrane potential, and reactive oxygen species (ROS) generation] of isolated rat liver mitochondria and mitochondria in intact cells were measured in the presence of eight exogenously applied quinones that differ in lipophilicity and one-electron reduction potential.
View Article and Find Full Text PDFFree Radic Biol Med
May 2016
Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden. Electronic address:
The mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a key enzyme in redox regulation, antioxidant defense, and cellular growth. TrxR1 can catalyze efficient reduction of juglone (5-hydroxy-1,4-naphthoquinone; walnut toxin) in a reaction which, in contrast to reduction of most other substrates of TrxR1, is not dependent upon an intact selenocysteine (Sec, U) residue of the enzyme. Using a number of TrxR1 mutant variants, we here found that a sole Cys residue at the C-terminal tail of TrxR1 is required for high-efficiency juglone-coupled NADPH oxidase activity of Sec-deficient enzyme, occurring with mixed one- and two-electron reactions producing superoxide.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2011
Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA.
Objective: The Pin1 prolyl isomerase acts in concert with proline-directed protein kinases to regulate function of protein substrates through isomerization of peptide bonds that link phosphoserine or phosphothreonine to proline. We sought to determine whether Pin1 interacts with endothelial nitric oxide synthase (eNOS) in endothelial cells in a manner that depends on proline-directed phosphorylation of the eNOS enzyme and whether this interaction influences basal or agonist-stimulated eNOS activity.
Methods And Results: Inhibitors of the extracellular-regulated kinase (ERK) 1/2 MAP kinases inhibit proline-directed phosphorylation of eNOS at serine 116 (Ser116) in bovine aortic endothelial cells (BAECs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!