(1) Background: Modern medicine generates a great deal of information that stored in medical databases. Simultaneously, extracting useful knowledge and making scientific decisions for diagnosis and treatment of diseases becomes increasingly necessary. Headache disorders are the most prevalent of all the neurological conditions. Headaches have not only medical but also great socioeconomic significance. The aim of this research is to develop an intelligent system for diagnosing primary headache disorders. (2) Methods: This research applied various mathematical, statistical and artificial intelligence techniques, among which the most important are: Calinski-Harabasz index, Analytical Hierarchy Process, and Weighted Fuzzy C-means Clustering Algorithm. These methods, techniques and methodologies are used to create a hybrid intelligent system for diagnosing primary headache disorders. The proposed intelligent diagnostic system is tested with original real-world data set with different metrics. (3) Results: First at all, nine of 20 attributes - features from International Headache Society (IHS) criteria are selected, and then only five most important attributes from IHS criteria are selected. The calculation result based on the Calinski-Harabasz index value (178) for the optimal number of clusters is three, and they present three classes of headaches: (i) migraine, (ii) tension-type headaches (TTHs), and (iii) other primary headaches (OPHs). The proposed hybrid intelligent system shows the following quality metrics: Accuracy 75%; Precision 67% for migraine, 74% for TTHs, 86% for OPHs, and Average Precision 77%; Recall 86% for migraine, 73% for TTHs, 67% for OPHs, Average Recall 75%; F score 75% for migraine, 74% for TTHs, 75% for OPHs, and Average F score 75%. (4) Conclusions: The hybrid intelligent system presents qualitative and respectable experimental results. The implementation of existing diagnostics systems and the development of new diagnostics systems in medicine is necessary in order to help physicians make quality diagnosis and decide the best treatments for the patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919804 | PMC |
http://dx.doi.org/10.3390/ijerph18041890 | DOI Listing |
Sci Rep
December 2024
Department of Electrical and Electronics Engineering, SR University, Warangal, Telangana, 506371, India.
Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.
View Article and Find Full Text PDFSci Rep
December 2024
College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
Vector-borne diseases pose a major worldwide health concern, impacting more than 1 billion people globally. Among various blood-feeding arthropods, mosquitoes stand out as the primary carriers of diseases significant in both medical and veterinary fields. Hence, comprehending their distinct role fulfilled by different mosquito types is crucial for efficiently addressing and enhancing control measures against mosquito-transmitted diseases.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Administration, Guangzhou University, Guangzhou, 510006, China.
The randomness and volatility of existing clean energy sources have increased the complexity of grid scheduling. To address this issue, this work proposes an artificial intelligence (AI) empowered method based on the Environmental, Social, and Governance (ESG) big data platform, focusing on multi-objective scheduling optimization for clean energy. This work employs a combination of Particle Swarm Optimization (PSO) and Deep Q-Network (DQN) to enhance grid scheduling efficiency and clean energy utilization.
View Article and Find Full Text PDFSci Rep
December 2024
Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.
The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.
View Article and Find Full Text PDFSci Rep
December 2024
School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
To mitigate the safety risks and economic losses caused by wheel damage, this paper proposes an interval valued fuzzy inference-based sound analysis method for wheel damage detection. Firstly, interval valued fuzzy sets are defined to represent various levels of damage severity. A similarity calculation method is then designed, based on the defined interval valued fuzzy sets, to assess the damage level of wheel components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!