Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The cutting force prediction model usually uses the classical oblique transformation method, which introduces the orthogonal cutting parameters into the oblique milling edge shape, and combines the geometric parameters of the tool to convert the orthogonal cutting force into the actual cutting force, thereby predicting the cutting force. However, this cutting force prediction method ignores the impact of tool vibration in actual machining, resulting in a large difference between the prediction model and the actual measurement. This paper proposes a cutting force conversion model considering the influence of the tool system. The proposed model fully considers the impact of tool vibration on the cutting force. On the basis of the orthogonal model, superimposing the additional cutting force generated by tool vibration makes the predicted value of the model closer to the actual cutting force. The results of milling experiments show that the conversion model can obtain higher prediction accuracy. Moreover, compared with the original conversion model, the accuracy of the proposed model is significantly improved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917931 | PMC |
http://dx.doi.org/10.3390/s21041340 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!