There is high demand in the medical field for rapid fabrication of biodegradable patches at low cost and high throughput for various instant applications, such as wound healing. Bioprinting is a promising technology, which makes it possible to fabricate custom biodegradable patches. However, several challenges with the physical and chemical fidelity of bioprinted patches must be solved to increase the performance of patches. Here, we presented two hybrid hydrogels made of alginate-cellulose nanocrystal (CNC) (2% / alginate and 4% / CNC) and alginate-TEMPO oxidized cellulose nanofibril (T-CNF) (4% / alginate and 1% / T-CNC) via ionic crosslinking using calcium chloride (2% /). These hydrogels were rheologically characterized, and printing parameters were tuned for improved shape fidelity for use with an extrusion printing head. Young's modulus of 3D printed patches was found to be 0.2-0.45 MPa, which was between the physiological ranges of human skin. Mechanical fidelity of patches was assessed through cycling loading experiments that emulate human tissue motion. 3D bioprinted patches were exposed to a solution mimicking the body fluid to characterize the biodegradability of patches at body temperature. The biodegradation of alginate-CNC and alginate-CNF was around 90% and 50% at the end of the 30-day in vitro degradation trial, which might be sufficient time for wound healing. Finally, the biocompatibility of the hydrogels was tested by cell viability analysis using NIH/3T3 mouse fibroblast cells. This study may pave the way toward improving the performance of patches and developing new patch material with high physical and chemical fidelity for instant application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918604 | PMC |
http://dx.doi.org/10.3390/mi12020195 | DOI Listing |
Pigment Cell Melanoma Res
January 2025
Department of Dermatology, Faculty of Medicine, Cairo University, Giza, Egypt.
Vitiligo pathogenesis is complex. There is some evidence in support of the neurohormonal pathways involved. Although considered a nonpruritic condition, some patients may experience itching, which can occur ahead of the appearance of the patches.
View Article and Find Full Text PDFBioact Mater
April 2025
Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.
View Article and Find Full Text PDFTob Prev Cessat
January 2025
Institute for Mental Health and Policy Research, Centre for Addiction and Mental Health, Toronto, Canada.
Introduction: Rural regions generally report higher smoking rates than urban centers, which increases the risk of tobacco related harms and consequences, and makes promoting smoking cessation in these areas a priority. Mass distribution of nicotine replacement therapy (NRT) by postal mail has been found to increase the odds of successful cessation attempts. Understanding factors that contribute to the use of NRT could help maximize this intervention's effectiveness.
View Article and Find Full Text PDFISME Commun
January 2025
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:
ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!