Turntable Paper-Based Device to Detect .

Micromachines (Basel)

Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.

Published: February 2021

has been known to cause a variety of infectious diseases. The conventional enzyme-linked immunosorbent assay (ELISA) is a well-known method widely used to diagnose a variety of infectious diseases. This method is expensive and requires considerable time and effort to conduct and complete multiple integral steps. We previously proposed the use of paper-based ELISA to rapidly detect the presence of . This approach has demonstrated utility for point-of-care (POC) urinary tract infection diagnoses. Paper-based ELISA, while advantageous, still requires the execution of several procedural steps. Here, we discuss the design and experimental implementation of a turntable paper-based device to simplify the paper-based ELISA protocols for the detection of . In this process, antibodies or reagents are preloaded onto zones of a paper-based device and allowed to dry before use. We successfully used this device to detect with a detection limit of 10 colony-forming units (colony-forming unit [CFU])/mL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7917795PMC
http://dx.doi.org/10.3390/mi12020194DOI Listing

Publication Analysis

Top Keywords

paper-based device
12
paper-based elisa
12
turntable paper-based
8
device detect
8
variety infectious
8
infectious diseases
8
paper-based
5
device
4
detect variety
4
diseases conventional
4

Similar Publications

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.

View Article and Find Full Text PDF

Advances in the design and application of contactless conductivity detectors for separation, flow-through, microfluidic and sensing techniques: A review.

Anal Chim Acta

February 2025

Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic. Electronic address:

The review focuses on the design of detection cells, the use of microcontrollers for processing and evaluation of the detection signal, and the development of multi-detection systems for electromigration, liquid chromatography, flow-through and microfluidic techniques. A separate section is the introduction of modern 3D printing techniques and the use of new printing materials for the design of multidetection systems. In addition to traditional utilisation in separation techniques, new versions of contactless conductivity detectors are finding applications in FIA, SIA, portable and paper based analytical systems or as independent sensors.

View Article and Find Full Text PDF

A signal amplifying MOF-based probe:on-site and ultrasensitive dual-channel portable detection of Hg in groundwater through a fluorimetrically and RGB-based sensing assay.

Talanta

January 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, People's Republic of China. Electronic address:

Mercury (II) ions (Hg) are a significant source of heavy metal contamination in groundwater, posing a serious threat to human health and the environment. Therefore, there is an urgent need for the development of a new detection technique with high sensitivity for monitoring Hg in contaminated groundwater. Here, we developed a signal amplifying MOF-based probe (NXS@ZIF-8) for on-site and ultrasensitive dual-channel portable detection of Hg in groundwater.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!