We study the orientation and ordering of nanodomains of a thickness-modulated lamellar block copolymer (BCP) thin film at each thickness region inside a topological nano/micropattern of bare silicon wafers without chemical pretreatments. With precise control of the thickness gradient of a BCP thin film and the width of a bare silicon trench, we successfully demonstrate (i) perfectly oriented lamellar nanodomains, (ii) pseudocylindrical nanopatterns as periodically aligned defects from the lamellar BCP thin film, and (iii) half-cylindrical nanostructure arrays leveraged by a trench sidewall with the strong preferential wetting of the PMMA block of the BCP. Our strategy is simple, efficient, and has an advantage in fabricating diverse nanopatterns simultaneously compared to conventional BCP lithography utilizing chemical pretreatments, such as a polymer brush or a self-assembled monolayer (SAM). The proposed self-assembly nanopatterning process can be used in energy devices and biodevices requiring various nanopatterns on the same device and as next-generation nanofabrication processes with minimized fabrication steps for low-cost manufacturing techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918743 | PMC |
http://dx.doi.org/10.3390/polym13040553 | DOI Listing |
Light Sci Appl
January 2025
Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body environment, raising reliability concerns, particularly for chronic use. Here, we evaluate the inherent hermeticity of bare die ICs, and examine the potential of polydimethylsiloxane (PDMS), a moisture-permeable elastomer, as a standalone encapsulation material.
View Article and Find Full Text PDFJ Fluoresc
November 2024
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
Spectral down-shifting materials can convert the less utilized photons in the solar spectrum into the portion that solar cells can fully utilize, providing an effective means of improving the efficiency of solar cells. In this work, the spectral down-shifting material BaSiOCl: Eu (BSOC) was prepared by a high-temperature solid-state method. The fluorescence spectra indicate that the absorption spectrum of BSOC can cover the range of 210-500 nm, and has a strong emission spectrum with a broadband of 410-650 nm.
View Article and Find Full Text PDFCell Mol Life Sci
August 2024
Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA.
In intravenous immunoglobulins (IVIG), and some other immunoglobulin products, protein particles have been implicated in adverse events. Role and mechanisms of immunoglobulin particles in vascular adverse effects of blood components and manufactured biologics have not been elucidated. We have developed a model of spherical silica microparticles (SiMPs) of distinct sizes 200-2000 nm coated with different IVIG- or albumin (HSA)-coronas and investigated their effects on cultured human umbilical vein endothelial cells (HUVEC).
View Article and Find Full Text PDFDalton Trans
September 2024
Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China.
The efficiency of silicon solar cells is still lower than theoretical values, partly due to their inability to utilize the ultraviolet and infrared portions of the solar spectrum. Herein, a novel method using a KCaMg(VO) phosphor with a down-shift effect to improve the photovoltaic performance of silicon solar cells and enhance the utilization of UV light in standard p-type silicon solar cells is proposed. The synthesized phosphors were mixed with an ethylene vinyl acetate (EVA) copolymer and pressed into a film, which was subsequently encapsulated in monocrystalline silicon solar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!