Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies.

Pharmacol Res

Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea. Electronic address:

Published: May 2021

Natural biflavonoids, such as amentoflavone, bilobetin, ginkgetin, isoginkgetin, taiwaniaflavone, morelloflavone, delicaflavone, hinokiflavone, and other derivatives (~ 40 biflavonoids), are isolated from Selaginella sp., Ginkgo biloba, Garcinia sp., and several other species of plants. They are able to exert therapeutic benefits by regulating several proteins/enzymes (PPAR-γ, CCAAT/enhancer-binding protein α [C/EBPα], STAT5, pancreatic lipase, PTP1B, fatty acid synthase, α-glucosidase [AG]) and insulin signaling pathways (via PI3K-AKT), which are linked to metabolism, cell growth, and cell survival mechanisms. Deregulated insulin signaling can cause complications of obesity and diabetes, which can lead to cognitive disorders such as Alzheimer's, Parkinson's, and dementia; therefore, the therapeutic benefits of these biflavones in these areas are highlighted. Since biflavonoids have shown potential to regulate metabolism, growth- and survival-related protein/enzymes, their relation to tumor growth and metastasis of cancer associated with angiogenesis are highlighted. The translational role of biflavones in cancer with respect to the inhibition of metabolism-related processes/pathways, enzymes, or proteins, such as STAT3/SHP-1/PTEN, kinesins, tissue kallikreins, aromatase, estrogen, protein modifiers, antioxidant, autophagy, and apoptosis induction mechanisms, are discussed. Finally, considering their observed bioactivity potential, oral bioavailability studies of biflavones and related clinical trials are outlined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2021.105525DOI Listing

Publication Analysis

Top Keywords

natural biflavonoids
8
therapeutic benefits
8
insulin signaling
8
bioactivity natural
4
biflavonoids
4
biflavonoids metabolism-related
4
metabolism-related disease
4
disease cancer
4
cancer therapies
4
therapies natural
4

Similar Publications

Common Juniper ( L.) is a gymnosperm that stands out through its fleshy, spherical female cones, often termed simply "berries". The cone berries and various vegetative parts (leaves, twigs and even roots) are used in traditional phytotherapy, based on the beneficial effects exerted by a variety of secondary metabolites.

View Article and Find Full Text PDF

In this study, the extraction, purification and metabolic enzyme inhibition potential of were investigated. In order to extract the total biflavonoids from (SDTBs), the optimum extraction process was obtained by optimizing the ultrasonic extraction parameters using response-surface methodology. This resulted in a total biflavonoid content of 22.

View Article and Find Full Text PDF

Dimeric forms of flavonoids, known as biflavonoids, are much less studied compared to monomeric forms. It is estimated that nearly 600 different natural biflavonoids have been described to date, containing various subtypes that can be subdivided according to the position of their combinations and the nature of the subunits. The group in which two monomers are linked by a 3'-8″-C atom includes the first isolated biflavonoid ginkgetin, derivatives of amentoflavone, and several other compounds.

View Article and Find Full Text PDF

Amentoflavone (AF), a plant biflavone isolated from Selaginella sinensis ethanol extract, is characterized by anti-inflammatory and anti-oxidant properties. According to previous studies, inflammation and oxidative stress are closely related to the pathophysiology of osteoarthritis (OA). However, the effects and mechanisms of AF on OA have not been elucidated.

View Article and Find Full Text PDF

Activating transcription factor 4 (ATF4) plays a central role in the integrated stress response (ISR) and one overlapping branch of the unfolded protein response (UPR). We recently reported that the splicing inhibitor isoginkgetin (IGG) induced ATF4 protein along with several known ATF4-regulated transcripts in a response that resembled the ISR and UPR. However, the contribution of ATF4-dependent and -independent transcriptional responses to IGG exposure was not known.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!